Hydrolysis of chylomicron triacylglycerol by endothelium-bound lipoprotein lipase. Effect of decreased apoprotein C-II/C-III ratio.
Ontology highlight
ABSTRACT: Chylomicrons with a decreased ratio of C-II/C-III apoproteins on their surface produced by the addition of apoproteins C-III-0 or C-III-3 to intact rat lymph chylomicrons. These chylomicrons inhibited the activity of soluble lipoprotein lipase in vitro, but had no effect on the activity of the endothelium-bound enzyme in the perfused heart.
Project description:Lipoprotein lipase (LPL) is an extracellular lipase that preferentially hydrolyses triglycerides in triglyceride-rich lipoproteins within the circulation. LPL expression in macrophages contributes to atherosclerosis. In addition, the hydrolysis products liberated from lipoprotein lipids by LPL causes lipid accumulation and impairs cholesterol efflux ability in macrophages. However, the effects of LPL hydrolysis products in modulating the transcript profiles within macrophages and their roles in foam cell formation are not completely understood. We performed microarray analyses on THP-1 macrophages incubated with LPL hydrolysis products to identify differentially expressed genes.
Project description:In an incubation system in vitro with fully activated Intralipid as substrate, rat high-density lipoprotein inhibits the hydrolysis of triacylglycerol by lipoprotein lipase from rat adipose tissue, but does not inhibit hydrolysis by the enzyme from bovine milk. The pattern of inhibition suggests that substrate and high-density lipoprotein may compete for association with rat adipose-tissue lipoprotein lipase.
Project description:Rat apoprotein C-II activated the hydrolysis of triacylglycerol in apoprotein-depleted chylomicrons by lipoprotein lipase in vitro and in the perfused rat heart. Apoproteins C-I and C-III-3 inhibited the hydrolysis of the triacylglycerol moiety in intact and apoprotein C-II-re-activated chylomicrons in vitro, but had no effect on the hydrolysis in situ.
Project description:Context:Glucagon-like peptide-1 (GLP-1) agonists control postprandial glucose and lipid excursion in type 2 diabetes; however, the mechanisms are unclear. Objective:To determine the mechanisms of postprandial lipid and glucose control with lixisenatide (GLP-1 analog) in type 2 diabetes. Design:Randomized, double-blind, cross-over study. Setting:Centre for Diabetes, Endocrinology, and Research, Royal Surrey County Hospital, Guildford, United Kingdom. Patients:Eight obese men with type 2 diabetes [age, 57.3 ± 1.9 years; body mass index, 30.3 ± 1.0 kg/m2; glycosylated hemoglobin, 66.5 ± 2.6 mmol/mol (8.2% ± 0.3%)]. Interventions:Two metabolic studies, 4 weeks after lixisenatide or placebo, with cross-over and repetition of studies. Main Outcome Measures:Study one: very-low-density lipoprotein (VLDL) and chylomicron (CM) triacylglycerol (TAG) kinetics were measured with an IV bolus of [2H5]glycerol in a 12-hour study, with hourly feeding. Oral [13C]triolein, in a single meal, labeled enterally derived TAG. Study two: glucose kinetics were measured with [U-13C]glucose in a mixed-meal (plus acetaminophen to measure gastric emptying) and variable IV [6,6-2H2]glucose infusion. Results:Study one: CM-TAG (but not VLDL-TAG) pool-size was lower with lixisenatide (P = 0.046). Lixisenatide reduced CM [13C]oleate area under the curve (AUC)60-480min concentration (P = 0.048) and increased CM-TAG clearance, with no effect on CM-TAG production rate. Study two: postprandial glucose and insulin AUC0-240min were reduced with lixisenatide (P = 0.0051; P < 0.05). Total glucose production (P = 0.015), rate of glucose appearance from the meal (P = 0.0098), and acetaminophen AUC0-360min (P = 0.006) were lower with lixisenatide than with placebo. Conclusions:Lixisenatide reduced [13C]oleate concentrations, derived from a single meal in CM-TAG and glucose rate of appearance from the meal through delayed gastric emptying. However, day-long CM production, measured with repeated meal feeding, was not reduced by lixisenatide and decreased CM-TAG concentration resulted from increased CM-TAG clearance.
Project description:Lipoprotein lipase (LPL) has been proposed to play a role in the uptake of chylomicron remnants by hepatocytes by mediating the binding of these lipoproteins to cell-surface glycosaminoglycans and to the low-density-lipoprotein receptor-related protein (LRP). This proposal is based on studies that examined the binding of chylomicrons to HepG2 cells, fibroblasts and Chinese hamster ovary cells in culture, in the presence of large amounts of LPL [Beisiegel (1995) Curr. Opin. Lipidol. 6, 117-122]. We have investigated whether LPL attached to the surface of chylomicrons enhances the binding and uptake of these lipoproteins to isolated hepatocytes maintained in culture. Bovine milk LPL was bound to mouse chylomicrons, double-labelled in vivo with [3H]retinol (in retinyl esters) and with [14C]palmitic acid (in triacylglycerols), collected from the mesenteric lymph of normal mice and from mice lacking the apoprotein E (apo E) gene. Normal chylomicrons (containing apo E) and apo E-free chylomicrons, with or without bound LPL, were incubated with cultured hepatocytes isolated from mice lacking the apo E gene. At 0 degree C LPL did not enhance the binding of the normal or apo E-free chylomicrons by the hepatocytes. When incubations were performed at 37 degrees C the triacylglycerols of normal and apo E-free chylomicrons were hydrolysed by LPL and there was a significant uptake of [14C]fatty acids and [3H]retinol by the hepatocytes. The addition of heparin or lactoferrin, a known inhibitor of hepatic uptake of chylomicron remnants, to the incubation medium inhibited the uptake of [3H]retinol, present in the lipoprotein core, but not the uptake of the [14C]fatty acids. We conclude that: (1) LPL attached to chylomicrons in amounts sufficient to effectively hydrolyse their core triacylglycerols does not enhance the binding of these lipoproteins to the surface of isolated hepatocytes; (2) the recognition and uptake of chylomicrons by hepatocytes requires that these lipoproteins be first hydrolysed by LPL; and (3) the uptake of lipolysed chylomicrons (remnants) by hepatocytes does not require the mediation of apo E.
Project description:In the present study it was investigated whether apolipoprotein (apoE) can inhibit the lipoprotein lipase (LPL)-mediated hydrolysis of very-low-density-lipoprotein (VLDL) triacylglycerols (TAGs). Previous studies have suggested such an inhibitory role for apoE by using as a substrate for LPL either plasma VLDL or artificial TAG emulsions. To mimic the in vivo situation more fully, we decided to investigate the effect of apoE on the LPL-mediated TAG hydrolysis by using VLDL from apoE-deficient mice that had been enriched with increasing amounts of apoE. Furthermore, since plasma VLDL isolated from apoE-deficient mice was relatively poor in TAGs and strongly enriched in cholesterol as compared with VLDL from wild-type mice, we used nascent VLDL obtained by liver perfusions. Nascent VLDL (d<1. 006) isolated from the perfusate of the apoE-deficient mouse liver was rich in TAGs. Addition of increasing amounts of apoE to apoE-deficient nascent VLDL effectively decreased TAG lipolysis as compared with that of apoE-deficient nascent VLDL without the addition of apoE (63.1+/-6.3 and 20.8+/-1.8% of the control value at 2.7 microg and 29.6 microg of apoE/mg of TAG added respectively). Since, in vivo, LPL is attached to heparan sulphate proteoglycans (HSPG) at the endothelial matrix, we also performed lipolysis assays with LPL bound to HSPG in order to preserve the interaction of the lipoprotein particle with the HSPG-LPL complex. In this lipolysis system a concentration-dependent decrease in the TAG lipolysis was also observed with increasing amounts of apoE on nascent VLDL, although to a lesser extent than with LPL in solution (72.3+/-3.6% and 56.6+/-1.7% of control value at 2.7 microg and 29.6 microg of apoE/mg TAGs added respectively). In conclusion, the enrichment of the VLDL particle with apoE decreases its suitability as a substrate for LPL in a dose-dependent manner.
Project description:Background and objectivesIn dialysis patients, the associations between apoprotein profile and all-cause or cardiovascular disease (CVD)-related mortality are not well known. We, therefore, investigated whether apoprotein levels are associated with these events.Design, setting, participants, & measurementsWe undertook a prospective observational cohort study of prevalent hemodialysis patients aged ≥18 years (n=1081), who were followed for 4 years (2011-2014). Outcomes were all-cause and CVD-related mortality. Predictors used were baseline apoprotein levels, particularly the apoprotein B (apo B)/ apoprotein A-1 (apo A-1) ratio. A Cox regression analysis was used to calculate the hazard ratios (HRs) for mortality. Apo A-1, apo B, and apo B/ apo A-1 ratio were analyzed with adjustments in three models: model 1, basic adjustment for age and sex; model 2, basic adjustments plus dialysis conditions (dialysis vintage, mean predialysis systolic blood pressure, dry weight, and mean intradialytic weight gain); and model 3, model 2 plus metabolic and inflammatory conditions (basal kidney disease, serum albumin, C-reactive protein level, and statin use).ResultsOf the 1081 patients included in the study, 203 deaths were recorded, 92 of which were related to CVD. The apo B/ apo A-1 ratio was significantly associated with all-cause and CVD-related mortality when analyzed by 1-SD increments or quartile IV versus I in all models. In model 3, HRs and 95% confidence intervals (95% CIs) for 1-SD increments of apo B/ apo A-1 ratio for all-cause mortality or CVD-related mortality were: HR, 1.16 (95% CI, 1.00 to 1.35), or HR, 1.38 (95% CI, 1.11 to 1.71), respectively, and for quartile IV versus I: HR, 1.65 (95% CI, 1.05 to 2.57), or HR, 2.56 (95% CI, 1.21 to 5.40), respectively. Apo A-1 was significantly associated with both mortalities in models 1 and 2. However, apo B was only significantly associated with CVD-related mortality in model 3.ConclusionsApoprotein measurement, especially the apo B/ apo A-1 ratio, was significantly associated with all-cause and CVD-related mortality in prevalent dialysis patients.
Project description:Lipoprotein lipase (LPL) is responsible for the intravascular processing of triglyceride-rich lipoproteins. The LPL within capillaries is bound to GPIHBP1, an endothelial cell protein with a three-fingered LU domain and an N-terminal intrinsically disordered acidic domain. Loss-of-function mutations in LPL or GPIHBP1 cause severe hypertriglyceridemia (chylomicronemia), but structures for LPL and GPIHBP1 have remained elusive. Inspired by our recent discovery that GPIHBP1's acidic domain preserves LPL structure and activity, we crystallized an LPL-GPIHBP1 complex and solved its structure. GPIHBP1's LU domain binds to LPL's C-terminal domain, largely by hydrophobic interactions. Analysis of electrostatic surfaces revealed that LPL contains a large basic patch spanning its N- and C-terminal domains. GPIHBP1's acidic domain was not defined in the electron density map but was positioned to interact with LPL's large basic patch, providing a likely explanation for how GPIHBP1 stabilizes LPL. The LPL-GPIHBP1 structure provides insights into mutations causing chylomicronemia.
Project description:Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products.
Project description:Very-low-density (VLD) lipoproteins and portomicrons were isolated from the plasma of immature and laying hens and their size, lipid composition and susceptibility to hydrolysis by lipoprotein lipase were compared. In agreement with other studies, VLD lipoproteins from laying hens were found to be smaller and have a different lipid composition than VLD lipoproteins from immature hens. Portomicrons from immature and laying hens had mean diameters of about 150 nm and similar lipid compositions. Hydrolysis of VLD lipoproteins from immature hens, and portomicrons from immature and laying hens, proceeded rapidly until at least 40% of the substrate had been used. In contrast only 1--15% of laying-hen VLD-lipoprotein triacylglycerol was readily hydrolysis occurred slowly. The limited susceptibility of laying-hen VLD lipoproteins appeared to be due to their low content of lipoprotein lipase activator apoprotein, which occurred despite an abundance of activator in the high-density lipoproteins of laying-hen plasma. The results provide further evidence that the liver of the laying hen synthesizes specialized lipoproteins. Their limited susceptibility to hydrolysis by lipoprotein lipase is probably a major factor in ensuring transport of lipid to yolk rather than to other tissues. The form of transport of dietary lipid, however, is similar in immature and laying hens.