Subcellular distribution of enzymes determined by rapid digitonin fractionation of isolated hepatocytes.
Ontology highlight
ABSTRACT: Conditions were determined for rapid separation of cytosolic and mitochondrial compartments by digitonin fractionation of rat hepatocytes. The minimum time required for separation of mitochondrial and cytosolic enzyme markers decreased rapidly with increasing temperature. Kyro EOB, a non-ionic detergent, increases the release of cytosolic enzymes, particularly at lower temperatures. Experimental procedures are described for greater than 90% release of cytosolic enzymes and less than 2% release of mitochondrial enzymes in 3s. By using appropriate concentrations of digitonin and Kyro EOB in a fractionation medium maintained at 1 degrees C and a minimum time of exposure to the medium, nearly separate patterns of release were obtained for enzyme markers for the cytosol, mitochondrial matrix and mitochondrial intermembrane space. The distribution of enzymes that exist in more than one of these compartments was quantified by comparing their rates of release with those of marker enzymes. The cytosol/mitochondrial-matrix distributions for such enzymes in hepatocytes from starved rats were 16%/84% for aspartate aminotransferase, 34%/66% for fumarase and 77%/23% for ATP citrate lyase. In hepatocytes from rats that were induced to synthesize ATP citrate lyase by starvation and re-feeding, the ratio had increased to 95%/5%. The maximum cytosol/intermembrane-space ratio for adenylate kinase was 8%/92%. A procedure is also described for treating commercial digitonin that increases its solubility in water from about 1mg/ml to more than 800mg/ml.
SUBMITTER: Janski AM
PROVIDER: S-EPMC1161592 | biostudies-other | 1980 Feb
REPOSITORIES: biostudies-other
ACCESS DATA