Unknown

Dataset Information

0

The metabolism of 4-methyl-2-oxopentanoate in rat pancreatic islets.


ABSTRACT: 1. Radioactively labelled 4-methyl-2-oxopentanoate was taken up by isolated pancreatic islets in a concentration- and pH-dependent manner and led to the intracellular accumulation of labelled amino acid and to a decrease in the intracellular pH. Uptake of 4-methyl-2-oxopentanoate did not appear to be either electrogenic or Na+-dependent. The islet content of 2-oxo acid radioactivity was not affected by either 2-cyano-3-hydroxy-cinnamate (10mM) or pyruvate (10mM), although both these substances inhibited the oxidation of [U-14C]4-methyl-2-oxopentanoate by islet tissue. 2. 4-Methyl-2-oxopentanoate markedly stimulated islet-cell respiration, ketone-body formation and biosynthetic activity. The metabolism of endogenous nutrients by islets appeared to be little affected by the compound. 3. Studies with the 3H- and 14C-labelled substrate revealed that 4-methyl-2-oxopentanoate was incorporated by islets into CO2, water, acetoacetate, L-leucine and to a lesser extent into islet protein and lipid. Carbon atoms C-2, C-3 and C-4 of the acetoacetate produced were derived from the carbon skeleton of the 4-methyl-2-oxopentanoate, but the acetoacetate carboxy group was derived from the incorporation of CO2. These results, and consideration of the relative rates of 14CO2 and acetoacetate formation from 1-14C-labelled as opposed to U-14C-labelled 4-methyl-2-oxopentanoate, led to the conclusion that the pathway of catabolism of this 2-oxo acid in pancreatic islets is identical with that described in other tissues. The amination of 4-methyl-2-oxopentanoate by islets was attributed to the presence of a branched-chain amino acid aminotransferase (EC 2.6.1.42) activity in the tissue. Although glutamate dehydrogenase activity was demonstrated in islet tissue, the reductive amination of 2-oxoacids did not seem to be of importance in the formation of leucine from 4-methyl-2-oxopentanoate. 4. The results of experiments with respiratory inhibitors and uncouplers, and the finding that 14CO2 production and islet respiration were linked in a 1:1 stoicheiometry suggested that 4-methyl-2-oxopentanoate catabolism was coupled to mitochondrial oxidative phosphorylation. The catabolism of 4-methyl-2-oxopentanoate in islet tissue appeared to be regulated at the level of the initial 2-oxo acid dehydrogenase (EC 1.2.1.25) reaction.

SUBMITTER: Hutton JC 

PROVIDER: S-EPMC1161764 | biostudies-other | 1979 Nov

REPOSITORIES: biostudies-other

Similar Datasets

2017-06-02 | PXD004709 | Pride
| S-EPMC1179090 | biostudies-other
| S-EPMC1144317 | biostudies-other
| S-EPMC7181690 | biostudies-literature
| S-EPMC3923498 | biostudies-literature
| S-EPMC1179311 | biostudies-other
| S-EPMC1138660 | biostudies-other
| S-EPMC6045463 | biostudies-literature
| S-EPMC2711085 | biostudies-other
| S-EPMC1635448 | biostudies-other