The serum competitor of oestrogen--rat alpha 1-foetoprotein interactions. Identification as a mixture of non-esterified fatty acids.
Ontology highlight
ABSTRACT: The novel endogenous serum ligands of rat alpha 1-foetoprotein previously demonstrated in different mammalian sera were identified by g.l.c.--mass-spectrometric methods as a mixture of non-esterified long-chain and predominantly unsaturated fatty acids. Detailed comparative analyses of these ligands extracted from foetal- and pregnant-rat sera, rat amniotic fluid and foetal human sera are presented. We also show that an important fraction of these ligands remains associated with the rat alpha 1-foetoprotein after purification; analyses are given for the composition of this lipid moiety of the foetoprotein. The physiological relevance of these results is discussed.
Project description:The ability of oleic acid to modulate fibrinolysis was measured by following the urokinase-mediated and plasminogen-dependent cleavage of 125I-labelled fibrin clots. Oleic acid levels within the physiological range exerted a concentration-dependent inhibition of urokinase-mediated fibrinolytic activity. SDS/PAGE revealed that oleic acid enhances urokinase activity but simultaneously increases the autolytic cleavage of the newly formed low-molecular-mass subunit of plasmin. Oleic acid-induced cleavage of this subunit containing the catalytic site of plasmin was suppressed by the plasmin substrate H-D-valyl-L-leucyl-L-lysine-p-nitroanilide (S-2251) and was prevented by alpha 2-antiplasmin. A concentration-dependent inhibition of the activity of purified plasmin on 125I-labelled fibrin clot was also observed; 93% and 50% inhibition was noted with 150 microM and 32 microM oleic acid respectively. Oleic acid at 200 microM also effectively displaced plasmin prebound to a polylysine-Sepharose column. Examination of the fatty acid specificity showed that a minimal chain length of 16 carbon atoms and the presence of at least one double bond, preferably in a cis configuration, were required for inhibition of the fibrinolytic activity of plasmin. Oleic acid at a concentration that produced only a minimal inhibition of plasmin activity induced a marked inhibition by palmitic acid, while palmitic acid alone is ineffective. The findings suggest that oleic acid stimulates plasminogen activation and modulates the fibrinolytic and autolytic activities of plasmin.
Project description:ObjectiveObesity and dysmetabolism are major risk factors for atrial fibrillation (AF). Expansion of fat depots is associated with increased circulating total non-esterified fatty acids (NEFAs), elevated levels of which are associated with incident AF. We undertook comprehensive serum measurement of individual NEFA to identify specific associations with new-onset AF late in life.MethodsThe present study focused on participants with available serum and free of AF selected from the Cardiovascular Health Study, a community-based longitudinal investigation of older US adults. Thirty-five individual NEFAs were measured by gas chromatography. Cox regression was used to evaluate the association of individual NEFAs with incident AF.ResultsThe study sample included 1872 participants (age 77.7±4.4). During median follow-up of 11.3 years, 715 cases of incident AF occurred. After concurrent adjustment of all NEFAs and full adjustment for potential confounders, higher serum concentration of nervonic acid (24:1 n-9), a long-chain monounsaturated fatty acid, was associated with higher risk of AF (HR per SD: 1.18, 95% CI 1.08 to 1.29; p<0.001). Conversely, higher serum concentration of gamma-linolenic acid (GLA) (18:3 n-6), a polyunsaturated n-6 fatty acid, was associated with lower risk of AF (HR per SD: 0.81, 95% CI 0.71 to 0.94; p=0.004). None of the remaining NEFAs was significantly associated with AF.ConclusionsAmong older adults, serum levels of non-esterified nervonic acid were positively associated, while serum levels of non-esterified GLA were inversely associated, with incident AF. If confirmed, these results could offer new strategies for AF prevention and early intervention in this segment of the population at highest risk.
Project description:Bovine, human and rat serum albumins were defatted and palmitic acid, oleic acid and lauric acid added in various molar ratios. The binding of L-tryptophan to these albumins was measured at 20 degrees C in a 0.138 M salt solution at pH 7.4, by using an ultrafiltration technique, and analysed in terms of n, the number of available tryptophan-binding sites per albumin molecule, with apparent association constant, k. 2. n and k were 0.90 and 2.3x10(-4)M(minus-1) respectively for defatted bovine serum albumin and 0.87 and 9.7x10(-3)M(-minus-1) for human albumin. Addition of palmitic acid did not decrease n until the molar ratio, fatty acid/bovine albumin, approached and exceeded 2. The decrease in k was small and progressive. In contrast, lauric caused a marked decrease in n and k at ratios as low as 0.5. A similar distinction between the effects on n of palmitic acid and oleic acid and those of lauric acid was seen for human albumin. k for human albumin was not significantly affected by fatty acids under the conditions studied. 3. It is concluded that primary long-chain fatty acid sites interact only weakly with the tryptophan site on albumin and that inhibition of tryptophan binding occurs when secondary long-chain sites are occupied. Primary medium-chain fatty acid sites are distinct from primary long-chain sites but may be grouped with secondary long-chain sites. 4. The relationship between free and bound tryptophan in samples of rat plasma (Stoner et al., 1975) is discussed in terms of a similar but limited study of rat albumin.
Project description:Metabolic interactions between fatty acid oxidation and gluconeogenesis were investigated in vivo in 16h-old newborn rats under various nutritional states. As the newborn rat has no white adipose tissue, starvation from birth induces a low rate of hepatic fatty acid oxidation. Hepatic gluconeogenesis in inhibited in the starved newborn rat when compared with the suckling rat, which receives fatty acids through the milk, at the steps catalysed by pyruvate carboxylase and glyceraldehyde 3-phosphate dehydrogenase. These inhibitions are rapidly reversed by triacylglycerol feeding. Inhibition of fatty acid oxidation by pent-4-enoate in the suckling animal mimics the effect of starvation on the pattern of hepatic gluconeogenic metabolites. It is concluded that, in the newborn rat in vivo, hepatic fatty acids oxidation can increase the gluconeogenic flux by providing the acetyl-CoA necessary for the reaction catalysed by pyruvate carboxylase and the reducing equivalents (NADH) to displace the reversible reaction catalysed by glyceraldehyde 3-phosphate dehydrogenase in the direction of gluconeogenesis.
Project description:Fatty acid analysis of purified bovine alpha-foetoprotein showed it to contain 2.7 mol of fatty acid/mol of alpha-foetoprotein. Purified alpha-foetoprotein focused at isoelectric point 4.8. Removal of bound ligands from alpha-foetoprotein by charcoal treatment changed its isoelectric point to 5.2. This change could be reversed by addition of exogenous fatty acids to the defatted alpha-foetoprotein. Albumin isolated from the same foetal calf serum source as alpha-foetoprotein contained 1.4 mol of fatty acid/mol of protein. alpha-Foetoprotein and albumin contained comparable amounts of fatty acids with 14 to 18 carbon atoms, but alpha-foetoprotein contained 16 times as much of the long-chain polyunsaturated fatty acids as albumin. alpha-Foetoprotein was found to have slightly higher affinity for palmitate and linoleate and severalfold higher affinity for arachidonate than albumin. These findings suggest that alpha-foetoprotein may play a role in the foetal metabolism of the long-chain polyunsaturated fatty acids.
Project description:Circulating non-esterified fatty acids (NEFA) can reflect the composition of dietary fat or adipose tissues depending on the fasting conditions. Therefore, circulating NEFA may be valuable as biomarkers for meat quality traits, such as intramuscular fat content and fatty acid composition in finishing pigs. Genetic variants that regulate lipid metabolism can also modulate the circulating NEFA. We conducted an experiment with 150 heavy Duroc pigs to evaluate fluctuations in the circulating NEFA composition due to age, fasting duration and two genetic polymorphisms, one in the leptin receptor (LEPR; rs709596309) and one in the stearoyl-CoA desaturase (SCD; rs80912566) gene. Circulating NEFA were more saturated and less monounsaturated than the subcutaneous and intramuscular adipose tissues. Absolute circulating NEFA content was more influenced by fasting duration than age. The SCD polymorphism did not impact NEFA content or composition. The LEPR polymorphism affected the content but not the fatty acid composition. Circulating oleic acid NEFA content after a short fasting was positively correlated with intramuscular fat content and, after a long fasting, with intramuscular oleic acid content. We conclude that circulating NEFA reflect environmental and genetic metabolic changes but are of limited value as biomarkers for intramuscular fat content and fatty acid composition.
Project description:Backgrounds and aims: Elevated common carotid artery intima-media thickness (carotid IMT) and diminished flow-mediated dilation (FMD) are early subclinical indicators of atherosclerosis. Serum total non-esterified fatty acid (NEFA) concentrations have been positively associated with subclinical atherosclerosis. The relations between individual NEFA, carotid IMT and FMD have as yet to be assessed. Methods: We investigated the associations between fasting serum individual NEFA, carotid IMT and FMD among Cardiovascular Health Study (CHS) participants with (n = 255 for carotid IMT, 301 for FMD) or without (n = 1314 for carotid IMT, 1462 for FMD) known atherosclerotic cardiovascular disease (ASCVD). Using archived samples (fasting) collected from 1996-1997 (baseline), 35 individual NEFAs were measured using gas chromatography. Carotid IMT and estimated plaque thickness (mean of maximum internal carotid IMT) were determined in 1998-1999. FMD was measured in 1997-1998. Linear regression adjusted by the Holm-Bonferroni method was used to assess relations between individual NEFA, carotid IMT and FMD. Results: In multivariable adjusted linear regression models per SD increment, the non-esterified trans fatty acid conjugated linoleic acid (trans-18:2 CLA) was positively associated with carotid IMT [β (95% CI): 44.8 (19.2, 70.4), p = 0.025] among participants with, but not without, ASCVD [2.16 (-6.74, 11.5), p = 1.000]. Non-esterified cis-palmitoleic acid (16:1n-7c) was positively associated with FMD [19.7 (8.34, 31.0), p = 0.024] among participants without, but not with ASCVD. No significant associations between NEFAs and estimated plaque thickness were observed. Conclusions: In older adults, serum non-esterified CLA and palmitoleic acid were positively associated with carotid IMT and FMD, respectively, suggesting potential modifiable biomarkers for arteriopathy.
Project description:Among elderly participants from the Cardiovascular Health Study, we found that non-esterified trans fatty acid levels had a significant prospective association with hip fracture risk. Other non-esterified fatty acid classes were not associated with hip fracture risk.IntroductionSerum non-esterified fatty acids (NEFAs) are bioactive metabolic intermediates that can be taken up by bone tissue. Their associations with hip fracture risk have not been previously examined.MethodsThirty-five individual NEFAs in five classes (saturated [SFA], mono-un-saturated [MUFA], poly-unsaturated n-6 and n-3 [PUFA], and trans-FA) were measured in Cardiovascular Health Study participants (n = 2139, mean age 77.8 years) without known diabetes. The multivariable associations of NEFA levels with hip fracture risk were evaluated in Cox hazards models.ResultsWe documented 303 incident hip fractures during 11.1 years of follow-up. Among the five NEFA classes, total trans FA levels were positively associated with higher hip fracture risk (HR 1.17 [95% CI, 1.04, 1.31; p = 0.01] per one standard deviation higher level). The SFA lignoceric acid (24:0) was positively associated with higher risk (HR 1.09 [1.04, 1.1]; p < 0.001), while behenic (22:0) and docosatetraenoic (22:4 n6) acids were associated with lower risk (HR 0.76 [0.61, 0.94]; p = 0.01; 0.84 [0.70, 1.00]; p = 0.05, respectively).ConclusionTotal plasma trans NEFA levels are related to hip fracture risk, suggesting an unrecognized benefit of their systematic removal from food. Novel associations of individual NEFAs with hip fracture risk require confirmation in other cohort studies.
Project description:Type 2 diabetes has profound effects on metabolism that can be detected in plasma. While increases in circulating non-esterified fatty acids (NEFA) are well-described in diabetes, effects on signaling lipids have received little attention. Oxylipins and endocannabinoids are classes of bioactive fatty acid metabolites with many structural members that influence insulin signaling, adipose function and inflammation through autocrine, paracrine and endocrine mechanisms. To link diabetes-associated changes in plasma NEFA and signaling lipids, we quantitatively targeted >150 plasma lipidome components in age- and body mass index-matched, overweight to obese, non-diabetic (n?=?12) and type 2 diabetic (n?=?43) African-American women. Diabetes related NEFA patterns indicated ?60% increase in steroyl-CoA desaturase activity and ?40% decrease in very long chain polyunsaturated fatty acid chain shortening, patterns previously associated with the development of nonalcoholic fatty liver disease. Further, epoxides and ketones of eighteen carbon polyunsaturated fatty acids were elevated >80% in diabetes and strongly correlated with changes in NEFA, consistent with their liberation during adipose lipolysis. Endocannabinoid behavior differed by class with diabetes increasing an array of N-acylethanolamides which were positively correlated with pro-inflammatory 5-lipooxygenase-derived metabolites, while monoacylglycerols were negatively correlated with body mass. These results clearly show that diabetes not only results in an increase in plasma NEFA, but shifts the plasma lipidomic profiles in ways that reflect the biochemical and physiological changes of this pathological state which are independent of obesity associated changes.
Project description:BackgroundNon-esterified fatty acids (NEFAs) are one of the main lipid components of follicular fluid at concentrations that depend on circulating levels. Elevated levels of NEFAs impair oocyte quality, development potential, and may subsequently influence the metabolism and reproductive fitness of offspring. Granulosa cells (GCs) are the follicular cells that are closely communicating with the oocyte. However, the responses of GCs exposed to high levels of NEFAs when cocultured with cumulus-oocyte complexes (COCs), and how they attenuate the negative effects of NEFAs on oocytes, are unclear.ResultsTo better understand this protective effect, monolayers of porcine GCs were cocultured with COCs during in vitro maturation (IVM) in the presence of elevated levels of NEFAs. Genomic expression analysis was conducted to explore the responses of the GCs to the elevated levels of NEFAs. After limma algorithm analysis, 1,013 genes were differentially expressed between GCs cultured with and without elevated NEFAs. Among them, 438 genes were upregulated and 575 were downregulated. The differentially expressed genes were enriched in pathways related to metabolism, inflammation, and epithelial-mesenchymal transition.ConclusionsThe pathways and upstream regulators suggested that the cocultured GCs responded to the elevated NEFAs with (1) inhibition of the transition from granulosa to luteal cell, (2) interactions of metabolism change, anti-inflammation, mitochondrial function, and cell transition, (3) intercommunication with cocultured COCs of anti-inflammatory factors.