A study of the magnetic properties of haem a3 in cytochrome c oxidase by using magnetic-circular-dichroism spectroscopy.
Ontology highlight
ABSTRACT: M.c.d. (magnetic-circular-dichroism) spectroscopy was used to study the magnetization properties of the haem centres in cytochrome c oxidase with magnetic fields of between 0 and 5.3 T over the temperature range 1.5--200 K. The oxidized, oxidized cyanide and partially reduced cyanide forms of the enzyme were studied. In the oxidized state only cytochrome a3+ is detectable by m.c.d. spectroscopy, and its magnetization characteristics show it to be a low-spin ferric haem. In the partially reduced cyanide form of the enzyme cytochrome a is in the diamagnetic low-spin ferrous form, whereas cytochrome a3--CN is e.p.r.-detectable and gives an m.c.d.-magnetization curve typical of a low-spin ferric haem. In the oxidized cyanide form of the enzyme both cytochrome a and cytochrome a3--CN are detectable by m.c.d. spectroscopy, although only cytochrome a gives an e.p.r. signal. The magnetization characteristics of haem a3--CN show clearly that its ground state is an electronic doublet and that another state, probably a spin singlet, lies greater than 10 cm-1 above this. These features are well accounted for by an electronic state of spin S = 1 with a predominantly axial distortion, which leaves the doublet, Ms = +/- 1, as the ground state and the component Ms = 0 as the excited state. This state would not give an e.p.r. signal. Such an electronic state could arise either from a ferromagnetic coupling between haem a3+(3)-CN and the cupric ion, Cua3, or form a haem in the Fe(IV) state.
SUBMITTER: Thomson AJ
PROVIDER: S-EPMC1162656 | biostudies-other | 1981 Mar
REPOSITORIES: biostudies-other
ACCESS DATA