The relationship of phosphatidylinositol turnover to receptors and calcium-ion channels in rat parotid acinar cells.
Ontology highlight
ABSTRACT: To help elucidate the possible role of phosphatidylinositol in the regulation of membrane permeability to Ca2+, the relationship in the rat parotid gland of phosphatidylinositol turnover to hormone receptor binding and to the hormone-mediated increase in K+ permeability (a Ca2+-dependent phenomenon) was investigated. The concentrations of adrenaline and substance P required to stimulate phosphatidylinositol turnover were found to be similar to those required for the Ca2+-mediated change in K+ permeability and for ligand binding. However, in the case of muscarinic (cholinergic) receptor stimulation, the phosphatidylinositol response was better correlated to the increase in membrane permeability to Ca2+, as determined by the change in K+ permeability, than to receptor occupation. Consistent with this relationship between the phosphatidylinositol response and Ca2+-channel activation were results obtained by simultaneous administration of maximal or submaximal concentrations of muscarinic and alpha-adrenergic agonists. The extent of 32P incorporation when stimulated by maximal concentrations of two agonists did not summate, but, rather, was intermediate between the response of either agonist alone. One interpretation for these observations is that the phosphatidylinositol response may not be related to receptor occupation or activation, but may be involved in the Ca2+-gating mechanism itself.
SUBMITTER: Weiss SJ
PROVIDER: S-EPMC1162769 | biostudies-other | 1981 Feb
REPOSITORIES: biostudies-other
ACCESS DATA