Analysis of the forms of acetylcholinesterase from adult mouse brain.
Ontology highlight
ABSTRACT: The solubilization of 80% of the acetylcholinesterase activity of mouse brain was performed by repeated 2h incubations of homogenates at 37 degrees C in an aqueous medium. Analysis of the soluble extract by gel filtration on Sephadex G-200 showed that up to 80% of the enzyme activity was eluted in a peak which was estimated to consist of molecules of about 74000mol.wt. This peak was called the monomer form of the enzyme. After 3 days at 4 degrees C, the soluble extract was re-analysed and was eluted from the column in four peaks of about 74000, 155000, 360000 and 720000 mol.wt. Since the total activity of the enzyme in these peaks was the same as that in the predominantly monomer elution profile of fresh enzyme, we concluded that the monomer had aggregated, possibly into dimers, tetramers and octomers. Extracts of the enzyme were analysed by polyacrylamide-gel electrophoresis and the resulting multiple bands of enzyme activity on gels were shown to separate according to their molecular sizes, that is by molecular sieving. All these forms had similar susceptibilities to the inhibitors eserine, tetra-isopropyl pyrophosphoramide and compound BW 284c51 [1,5-bis-(4-allyldimethylammoniumphenyl)pentan-3-one dibromide]. Thus the forms of the enzyme in mouse brain which can be detected by gel filtration and polyacrylamide-gel electrophoresis may all be related to a single low-molecular-weight form which aggregates during storage. This supports similar suggestions made for the enzyme in other locations.
SUBMITTER: Adamson ED
PROVIDER: S-EPMC1165432 | biostudies-other | 1975 May
REPOSITORIES: biostudies-other
ACCESS DATA