The enzymic and non-enzymic degradation of colneleic acid, an unsaturated fatty acid ether intermediate in the lipoxygenase pathway of linoleic acid oxidation in potato (Solanum tuberosum) tubers.
Ontology highlight
ABSTRACT: Colneleic acid is an unsaturated ether fatty acid derived from linoleic acid via a lipoxygenase-mediated enzyme pathway. It is degraded (a) by an enzyme in potato tubers which is heat-labile and non-dialysable and (b) by a model system containing catalytic amounts of Fe(2+) ions. Both enzyme- and Fe(2+)-catalysed systems have similar properties with respect to pH optima (pH5.0-5.5), oxygen requirement (0.6-0.7 mol of O(2) consumed/mol of ether degraded), inhibitors and reaction products. An unstable product breaks down to C(8) and C(9) carbonyl fragments. Both systems are inhibited by low concentrations of antioxidants (e.g. 5mum-butylated hydroxytoluene) and some chelating agents (e.g. 5mum-diethyldithio-carbamate). The model system is strongly inhibited by metal ions, particularly Cu(2+) and Fe(3+), at 20mum. Hydrogen peroxide and haemoproteins do not substitute for the enzyme or Fe(2+) ions but the non-haem iron protein, ferredoxin, does catalyse the degradation.
SUBMITTER: Galliard T
PROVIDER: S-EPMC1166171 | biostudies-other | 1974 Jan
REPOSITORIES: biostudies-other
ACCESS DATA