Conformational changes in gastric mucoproteins induced by caesium chloride and guanidinium chloride.
Ontology highlight
ABSTRACT: 1. Caesium chloride and guanidinium chloride were shown to cause conformational changes in the high-molecular-weight mucoprotein A of water-soluble gastric mucus with no change in molecular weight. 2. Increasing concentrations of CsCl decrease the viscosity of the mucoprotein bringing about a transition which is essentially complete in 0.1m-CsCl. The shear-dependence of viscosity of the mucoprotein is abolished by low concentrations of CsCl. The normally highly expanded molecule becomes contracted in CsCl to a molecule having the same symmetry but a smaller volume and decreased solvation, in keeping with an increased sedimentation coefficient (18.7S-->33S). 3. This contracted form does not revert to the native conformation on removal of the CsCl. 4. A mechanism is discussed in terms of the effect of the Cs(+) and Cl(-)ions on water structure and the water-mucoprotein interaction. 5. Guanidinium chloride causes the CsCl-treated material to expand, in keeping with a decrease in s(0) (25,w) (33S-->26S). This is analogous to the known unfolding effect of guanidinium chloride on proteins and suggests that guanidinium chloride solubilizes groups involved in stabilizing the contracted structure. Removal of the guanidinium chloride results in a limited aggregation of four mucoprotein molecules. 6. These results show that caution must be exercised before interpreting the physical properties of mucoproteins which have been treated with CsCl and/or guanidinium chloride.
SUBMITTER: Snary D
PROVIDER: S-EPMC1168168 | biostudies-other | 1974 Sep
REPOSITORIES: biostudies-other
ACCESS DATA