Unknown

Dataset Information

0

The structure and mechanism of stem bromelain. Evaluation of the homogeneity of purified stem bromelain, determination of the molecular weight and kinetic analysis of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-L-phenylalanyl-L-serine methyl ester.


ABSTRACT: 1. Purified stem bromelain (EC 3.4.22.4) was eluted from Sephadex G-100 as a single peak. The specific activity across the elution peak was approximately constant towards p-nitrophenyl hippurate but increased with elution volume with N(2)-benzoyl-l-arginine ethyl ester as substrate. 2. The apparent molecular weight, determined by elution analysis on Sephadex G-100, is 22500+/-1500, an anomalously low value. 3. Purified stem bromelain was eluted from CM-cellulose CM-32 as a single peak and behaved as a single species during column electrophoresis on Sephadex G-100. 4. Purified stem bromelain migrates as a single band during polyacrylamide-gel electrophoresis under a wide variety of conditions. 5. The molecular weight determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate is 28500+/-1000. 6. Sedimentation-velocity and equilibrium-ultracentrifugation experiments, under a variety of conditions, indicate that bromelain is an apparently homogeneous single peptide chain of mol.wt. 28400+/-1400. 7. The N-terminal amino acid composition is 0.64+/-0.04mol of valine and 0.36+/-0.04mol of alanine per mol of enzyme of mol.wt. 28500. (The amino acid recovery of the cyanate N-terminal amino acid analysis was standardized by inclusion of carbamoyl-norleucine at the cyclization stage.) 8. The pH-dependence of the Michaelis parameters of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester was determined. 9. The magnitude and pH-dependence of the Michaelis parameters have been interpreted in terms of the mechanism of the enzyme. 10. The enzyme is able to bind N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester relatively strongly but seems unable to make use of the binding energy to promote catalysis.

SUBMITTER: Wharton CW 

PROVIDER: S-EPMC1168426 | biostudies-other | 1974 Dec

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC1168089 | biostudies-other
| S-EPMC1152436 | biostudies-other
| S-EPMC1144749 | biostudies-other
| S-EPMC7029392 | biostudies-literature
| S-EPMC10103745 | biostudies-literature
| S-EPMC3684201 | biostudies-literature
| S-EPMC6880536 | biostudies-literature
| S-EPMC7079011 | biostudies-literature
| S-EPMC6644415 | biostudies-literature
| S-EPMC10294096 | biostudies-literature