Phenethylbiguanide and the inhibition of hepatic gluconeogenesis in the guinea pig.
Ontology highlight
ABSTRACT: 1. Phenethylbiguanide inhibits the synthesis of phosphoenolpyruvate from malate or 2-oxoglutarate by isolated guinea-pig liver mitochondria. This inhibition is time- and concentration-dependent, with the maximum decrease in the rate of phosphoenolpyruvate synthesis (80%) evident after 10min of incubation with 1mm-phenethylbiguanide. 2. The phosphorylation of ADP by these mitochondria is also inhibited at increasing concentrations of phenethylbiguanide and there is a progressive increase in AMP formation. Guinea-pig liver mitochondria are more sensitive to this inhibition in oxidative phosphorylation caused by phenethylbiguanide than are rat liver mitochondria. 3. Simultaneous measurements of O(2) consumption and ADP phosphorylation with guinea-pig liver mitochondria oxidizing malate plus glutamate in State 3 indicated that phenethylbiguanide at low concentrations (0.1mm) inhibits respiration at Site 1. At higher phenethylbiguanide concentrations Site 2 is also inhibited. 4. Gluconeogenesis from lactate, pyruvate, alanine and glycerol by isolated perfused guinea-pig liver is inhibited to various degrees by phenethylbiguanide. Alanine is the most sensitive to inhibition (60% inhibition of the maximum rate by 0.1mm-phenethylbiguanide), whereas glycerol is relatively insensitive (25% inhibition at 4mm). 5. Gluconeogenesis from lactate and pyruvate by perfused rat liver was also inhibited by phenethylbiguanide, but only at high concentrations (8mm). Unlike guinea-pig liver, the inhibitory effect of phenethylbiguanide on rat liver was reversible after the termination of phenethylbiguanide infusion. 6. The time-course of inhibition of gluconeogenesis from the various substrates used in this study indicated a time-dependency which was related in part to the concentration of infused phenethylbiguanidine. This time-course closely paralleled that noted for the inhibition by phenethylbiguanide of phosphoenolpyruvate synthesis in isolated guinea-pig liver mitochondria.
SUBMITTER: Ogata K
PROVIDER: S-EPMC1168463 | biostudies-other | 1974 Oct
REPOSITORIES: biostudies-other
ACCESS DATA