Unknown

Dataset Information

0

L-arginine recognition by yeast arginyl-tRNA synthetase.


ABSTRACT: The crystal structure of arginyl-tRNA synthetase (ArgRS) from Saccharomyces cerevisiae, a class I aminoacyl-tRNA synthetase (aaRS), with L-arginine bound to the active site has been solved at 2.75 A resolution and refined to a crystallographic R-factor of 19.7%. ArgRS is composed predominantly of alpha-helices and can be divided into five domains, including the class I-specific active site. The N-terminal domain shows striking similarity to some completely unrelated proteins and defines a module which should participate in specific tRNA recognition. The C-terminal domain, which is the putative anticodon-binding module, displays an all-alpha-helix fold highly similar to that of Escherichia coli methionyl-tRNA synthetase. While ArgRS requires tRNAArg for the first step of the aminoacylation reaction, the results show that its presence is not a prerequisite for L-arginine binding. All H-bond-forming capability of L-arginine is used by the protein for the specific recognition. The guanidinium group forms two salt bridge interactions with two acidic residues, and one H-bond with a tyrosine residue; these three residues are strictly conserved in all ArgRS sequences. This tyrosine is also conserved in other class I aaRS active sites but plays several functional roles. The ArgRS structure allows the definition of a new framework for sequence alignments and subclass definition in class I aaRSs.

SUBMITTER: Cavarelli J 

PROVIDER: S-EPMC1170869 | biostudies-other | 1998 Sep

REPOSITORIES: biostudies-other

altmetric image

Publications

L-arginine recognition by yeast arginyl-tRNA synthetase.

Cavarelli J J   Delagoutte B B   Eriani G G   Gangloff J J   Moras D D  

The EMBO journal 19980901 18


The crystal structure of arginyl-tRNA synthetase (ArgRS) from Saccharomyces cerevisiae, a class I aminoacyl-tRNA synthetase (aaRS), with L-arginine bound to the active site has been solved at 2.75 A resolution and refined to a crystallographic R-factor of 19.7%. ArgRS is composed predominantly of alpha-helices and can be divided into five domains, including the class I-specific active site. The N-terminal domain shows striking similarity to some completely unrelated proteins and defines a module  ...[more]

Similar Datasets

| S-EPMC61076 | biostudies-literature
| S-EPMC3956977 | biostudies-literature
| S-EPMC305789 | biostudies-literature
| S-EPMC10115844 | biostudies-literature
| S-EPMC8514731 | biostudies-literature
| S-EPMC2998122 | biostudies-literature
2023-04-14 | PXD024091 | Pride
| S-EPMC1223815 | biostudies-other
| S-EPMC1370374 | biostudies-literature
| S-EPMC8136816 | biostudies-literature