Unknown

Dataset Information

0

Robustness of a gene regulatory circuit.


ABSTRACT: Complex interacting systems exhibit system behavior that is often not predictable from the properties of the component parts. We have tested a particular system property, that of robustness. The behavior of a system is termed robust if that behavior is qualitatively normal in the face of substantial changes to the system components. Here we test whether the behavior of the phage lambda gene regulatory circuitry is robust. This circuitry can exist in two alternative patterns of gene expression, and can switch from one regulatory state to the other. These states are stabilized by the action at the O(R) region of two regulatory proteins, CI and Cro, which bind with differential affinities to the O(R)1 and O(R)3 sites, such that each represses the synthesis of the other one. In this work, this pattern of binding was altered by making three mutant phages in which O(R)1 and O(R)3 were identical. These variants had the same qualitative in vivo patterns of gene expression as wild type. We conclude that the behavior of the lambda circuitry is highly robust. Based on these and other results, we propose a two-step pathway, in which robustness plays a key role, for evolution of complex regulatory circuitry.

SUBMITTER: Little JW 

PROVIDER: S-EPMC1171506 | biostudies-other | 1999 Aug

REPOSITORIES: biostudies-other

altmetric image

Publications

Robustness of a gene regulatory circuit.

Little J W JW   Shepley D P DP   Wert D W DW  

The EMBO journal 19990801 15


Complex interacting systems exhibit system behavior that is often not predictable from the properties of the component parts. We have tested a particular system property, that of robustness. The behavior of a system is termed robust if that behavior is qualitatively normal in the face of substantial changes to the system components. Here we test whether the behavior of the phage lambda gene regulatory circuitry is robust. This circuitry can exist in two alternative patterns of gene expression, a  ...[more]

Similar Datasets

| S-EPMC3266278 | biostudies-literature
| S-EPMC1959426 | biostudies-literature
| S-EPMC1183445 | biostudies-literature
| S-EPMC2792230 | biostudies-literature
| S-EPMC5391964 | biostudies-literature
| S-EPMC7351242 | biostudies-literature
| S-EPMC6613981 | biostudies-literature
| S-EPMC1794322 | biostudies-literature
| S-EPMC7841433 | biostudies-literature
| S-EPMC8344067 | biostudies-literature