Unknown

Dataset Information

0

Physicochemical characterization of the four-iron-four-sulphide ferredoxin from Bacillus stearothermophilus.


ABSTRACT: 1. A stable ferredoxin was prepared from Bacillus stearothermophilus and purified by chromatography on DEAE-cellulose and by electrophoresis. 2. The minimum molecular weight determined from the amino acid composition was about 7900 and this was in reasonable agreement with a value of 8500 determined by polyacrylamide-gel electrophoresis. The ferredoxin contained four iron atoms and four labile sulphide groups per molecule. 3. The optical absorption, optical-rotatory-dispersion and circular-dichroism spectra are typical of ferredoxins containing 4Fe-4S clusters. 4. Oxidation-reduction titrations, combined with electron-paramagnetic-resonance (e.p.r.) spectroscopy, showed that the protein has a mid-point potential, at pH8, of -280 +/- 10mV, and that only one electron-accepting paramagnetic species is present. 5. The e.p.r. spectrum of the reduced ferredoxin is more readily saturated with microwave power at low temperatures than those of the eight-iron ferredoxins, indicating that there is another mechanism of electron-spin relaxation in the latter. 6. Mossbauer spectra of both redox states were observed over a range of temperatures and in magnetic fields. At high temperatures (77 degrees K and above) both redox states appear as quadrupole-split doublets; in the reduced state two resolved doublets are seen, suggesting appreciable localization of the additional reducing electron. 7. The average chemical shift indicates formal valences of two Fe3+ and two Fe2+ in the oxidized state and three Fe2+ and one Fe3+ in the reduced state. However, the spectra indicate that there are differing degrees of electron delocalization over the iron atoms. 8. At low temperatures (4.2 degrees K) the oxidized form shows no hyperfine magnetic interaction, even in an applied magnetic field, evidence that the oxidized ferredoxin is in a non-magnetic state as a result of antiferromagnetic coupling between the iron atoms. 9. At 4.2 degrees K the reduced form shows a broad asymmetric pattern resulting from magnetic hyperfine interaction. This contrasts with the reduced ferredoxin of Clostridium pasteurianum, which shows a doublet, suggesting that in the latter there may be interaction between the two 4Fe-4S centres. 10. In large applied magnetic fields, positive and negative hyperfine fields are seen in the Mossbauer spectra of the reduced ferredoxin, evidence for antiferromagnetic coupling between the iron atoms in the 4Fe-4S centre. The high-field spectra of the reduced ferredoxin of B. stearothermophilus are similar to those of the reduced ferredoxin of C. pasteurianum.

SUBMITTER: Mullinger RN 

PROVIDER: S-EPMC1172327 | biostudies-other | 1975 Oct

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC1164037 | biostudies-other
| S-EPMC1177777 | biostudies-other
| S-EPMC305746 | biostudies-literature
| S-EPMC167381 | biostudies-other
| S-EPMC1147001 | biostudies-other
| S-EPMC3285294 | biostudies-literature