Studies on the biosynthesis in vivo and excretion of 16-unsaturated C 19 steroids in the boar.
Ontology highlight
ABSTRACT: 1. In one experiment [7alpha-(3)H]pregnenolone was infused continuously for 12min into the left spermatic artery of a sexually mature boar and blood was collected during this period by continuous drainage from the spermatic vein. After infusion, the testis was removed and immediately cooled to -196 degrees C. 2. From both the testicular tissue and the spermatic venous plasma, (3)H-labelled 16-unsaturated C(19) steroids were isolated and characterized and their radiochemical purity was established. 5alpha-Androst-16-en-3alpha- and 3beta-ol occurred mainly as sulphate conjugates and to a lesser extent as free steroids. Only traces of these alcohols occurred as glucosiduronate conjugates. 5alpha-Androst-16-en-3-one was found in the free (ether-extractable) fraction. 3. The isotope concentration of each of the (3)H-labelled 16-unsaturated C(19) steroids in testicular tissue was different from that in spermatic venous plasma. 4. The ratios of tritiated 5alpha-androst-16-en-3alpha- and 3beta-ol (free steroids) to their respective sulphate conjugates in the testicular tissue were less than the ratios of the same compounds in the spermatic venous plasma. The possibility that the sulphates are partially hydrolysed by testicular sulphatases before secretion is discussed. 5. In a second experiment, a continuous close-arterial infusion of [7alpha-(3)H]pregnenolone into the left testis was performed over a 200min period and all the urine that accumulated during the infusion was collected for analysis. 6. No (3)H-labelled 16-unsaturated C(19) steroids were detected in the urine as free steroids. Only a trace of 5alpha-androst-16-en-3alpha-ol was detected conjugated as glucosiduronate, whereas the corresponding 3beta-alcohol occurred mainly as glucosiduronate and to a lesser extent as sulphate. 7. The absence of 5alpha-androst-16-en-3beta-ol glucosiduronate in the spermatic venous blood and its presence in considerable amount in the urine may be attributed to hepatic glucuronyl transferase activity.
SUBMITTER: Saat YA
PROVIDER: S-EPMC1174167 | biostudies-other | 1972 Sep
REPOSITORIES: biostudies-other
ACCESS DATA