Glycogen synthetase and the control of glycogen synthesis in the cellular slime mould Dictyostelium discoideum during cell differentiation.
Ontology highlight
ABSTRACT: 1. The variation in cellular glycogen content of differentiating cells derived from myxamoebae that initially contained a wide range of glycogen contents (0.047-5.56mg of glycogen/10(8) myxamoebae) has been studied. 2. Myxamoebae that initially contained 0.047-3.62mg of glycogen/10(8) myxamoebae all gave rise to fruiting bodies that contained similar amounts of glycogen (0.06-0.11mg of glycogen/10(8) cells) but myxamoebae that initially contained 5.56mg of glycogen formed fruiting bodies containing 0.5mg of glycogen/10(8) cells. 3. Despite the high net rate of glycogen disappearance (during cell differentiation) from cells that contained more than 2mg of glycogen/10(8) cells initially, there were still significant variations in the rate of glycogen synthesis. The rate of glycogen synthesis reached a peak at the aggregation stage. 4. Evidence is presented showing that the rate of this synthesis of glycogen is controlled by factors other than the intracellular concentration of glycogen synthetase. 5. Our results are discussed in the context of the theory that the rates of glycogen synthesis and degradation act as a control mechanism for cell differentiation. 6. Criteria are discussed for deciding whether a biochemical event is causally or secondarily related to morphogenesis.
SUBMITTER: Hames BD
PROVIDER: S-EPMC1178420 | biostudies-other | 1972 Feb
REPOSITORIES: biostudies-other
ACCESS DATA