Unknown

Dataset Information

0

Hysteresis and conformational changes in ribosomal ribonucleic acid.


ABSTRACT: Both rat liver and Escherichia coli rRNA in 0.1m-sodium chloride were titrated with acid or alkali over the range pH3-7 at approx. 0 degrees C. rRNA did not bind acid reversibly and hysteresis was observed, i.e. the plot of acid bound to rRNA against pH had the form of a loop showing that the amount of acid bound at a particular pH depended on the direction of the titration. Although the boundary curves were reproducibly followed on titration from pH7 to 3 and from pH3 to 7, points within the loop were ;scanned', e.g. by titration from pH7 to a point in the range pH3-4 followed by titration with alkali to pH7. It is inferred that the ;lag' in the release of certain bound protons is at least 1 pH unit, that at least about 9-15% of the titratable groups (adenine and cytosine residues) that are involved in this process and that the free energy dissipated in completing a cycle is approx. 4.2kJ/mol (1kcal/mol) of nucleotide involved in hysteresis. The interpretation of the ;scanning' curves was illustrated by means of a cycle of possible changes in the conformation of a hypothetical nucleotide sequence that allows formation of poly(A).poly(AalphaH(+))-like regions in acidic solutions. It is also inferred that the extent of ;hysteresis' might depend on the primary nucleotide sequence of rRNA as well as on secondary structure.

SUBMITTER: Cox RA 

PROVIDER: S-EPMC1178512 | biostudies-other | 1972 Feb

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC1174049 | biostudies-other
| S-EPMC1206931 | biostudies-other
| S-EPMC1176757 | biostudies-other
| S-EPMC1165587 | biostudies-other
| S-EPMC1165809 | biostudies-other
| S-EPMC1179625 | biostudies-other
| S-EPMC1270570 | biostudies-other