Changes in the response of mitochondrial calcium transport to exogenous phosphate during development in flight muscle of the sheep blowfly Lucilla cuprina.
Ontology highlight
ABSTRACT: 1. Ca2+ transport by mitochondria isolated from flight muscle of the sheep blowfly Lucilla cuprina does not occur in the absence of added P1. Maximum rates of transport are attained when about 2.5 mM-phosphate is present. 2. As mitochondria develop, high but not low phosphate concentrations begin to inhibit Ca2+ transport markedly; those isolated from 2-day-old flies for example, are inhibited by about 75% by 20 mM-phosphate. Maximum rates of transport, i.e. those measured in the presence of 2.5 mM-phosphate, begin to decline only when the fly is about 3 days old. 3. Mitochondrial phosphate transport activity does not change during development of the blowfly, but the endogenous concentration of the anion does. At emergence it is about 6nmol/mg of protein, increases to about 17 nmol/mg of protein at 2-3h and then rapidly declines to reach less than 5 nmol/mg of protein after 2 days of adult life. 4. Studies on the effect of phosphate on oxidation of alpha-glycerophosphate in the absence and presence of ADP reveal a lack of inhibition by high phosphate concentrations indicating that the anion does not influence Ca2+ transport by preventing the generation of the proton electrochemical gradient across the inner membrane. 5. It is concluded that the molecular assembly in the inner membrane of Lucilla mitochondria responsible for transporting Ca2+ is fully developed at emergence and remains so for at least 2-3 days of adult life. The possibility exists that Ca2+-transport activity in these mitochondria is controlled at least in part by P1.
SUBMITTER: Smith RL
PROVIDER: S-EPMC1183863 | biostudies-other | 1978 Jan
REPOSITORIES: biostudies-other
ACCESS DATA