The mode of action of 4-methylumbelliferyl beta-D-xyloside on the synthesis of chondroitin sulphate in embryonic-chicken sternum.
Ontology highlight
ABSTRACT: 1. Embryonic-chicken sterna, incubated in medium containing 0.1mm-4-methylumbelliferyl beta-d-xyloside (4-methylcoumarin 7-beta-d-xyloside), synthesize proteochondroitin sulphate that is significantly undersulphated and shorter than usual [Gibson, Segen & Audhya (1977) Biochem. J.162, 217-233]. 2. Neither the beta-d-galactoside nor the beta-d-glucuronide of 4-methylumbelliferone, nor 4-methylumbelliferone itself, produced the effects. The only metabolites of 4-methylumbelliferone that were detected in cartilages exposed to 4-methylumbelliferyl beta-d-xyloside were unchanged xyloside and chondroitin sulphate covalently attached to 4-methylumbelliferone. 3. Gel filtration of salt extracts of sterna incubated in medium containing the xyloside showed that there were two pools of chondroitin sulphate in the tissue. One pool was identified, on the basis of its elution pattern and the linear kinetics of incorporation of sulphate into it, as proteochondroitin sulphate. Incorporation into the other pool, whose properties suggested that it was methylumbelliferyl-chondroitin sulphate, indicated that it underwent partial turnover. The molecular weight of this chondroitin sulphate was about 19000, and it appeared to be about 70% sulphated. 4. When sterna were incubated in medium containing the xyloside, there was a very large incorporation of sulphate and glucose into glycosaminoglycans that were released into the incubation medium. This contrasts with incubations of sterna in the absence of the xyloside, in which less than 5% of the sulphate incorporated could be recovered from the medium. The glycosaminoglycan released into the medium was 4-methylumbelliferyl-chondroitin sulphate, whose average molecular weight was 7000-8000 and degree of sulphation more than 95%. 5. Incorporation of sulphate into proteochondroitin sulphate was stimulated more than 3-fold by addition of 20% (v/v) human serum and 10nm-l-3,3',5-tri-iodothyronine. Incorporation into methylumbelliferyl-chondroitin sulphate, in either the tissue or the medium, was not significantly altered. 6. The decrease in chain length and degree of sulphation of proteochondroitin sulphate is explained in terms of competition between peptide-linked primers and methylumbelliferone-containing primers at the intracellular sites of polysaccharidechain elongation and sulphation. The implications of the results for the mechanism of stimulation of proteoglycan synthesis by serum factors are discussed.
SUBMITTER: Gibson KD
PROVIDER: S-EPMC1184118 | biostudies-other | 1977 Oct
REPOSITORIES: biostudies-other
ACCESS DATA