Unknown

Dataset Information

0

Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor kappaB to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted antioxidants.


ABSTRACT: ROS (reactive oxygen species) from mitochondrial and non-mitochondrial sources have been implicated in TNFalpha (tumour necrosis factor alpha)-mediated signalling. In the present study, a new class of specific mitochondria-targeted antioxidants were used to explore directly the role of mitochondrial ROS in TNF-induced apoptosis. MitoVit E {[2-(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)ethyl]triphenylphosphonium bromide} (vitamin E attached to a lipophilic cation that facilitates accumulation of the antioxidant in the mitochondrial matrix) enhanced TNF-induced apoptosis of U937 cells. In time course analyses, cleavage and activation of caspase 8 in response to TNF were not affected by MitoVit E, whereas the activation of caspase 3 was significantly increased. Furthermore, there was an increased cleavage of the proapoptotic Bcl-2 family member Bid and an increased release of cytochrome c from mitochondria, in cells treated with TNF in the presence of MitoVit E. We considered several mechanisms by which MitoVit E might accelerate TNF-induced apoptosis including mitochondrial integrity (ATP/ADP levels and permeability transition), alterations in calcium homoeostasis and transcription factor activation. Of these, only the transcription factor NF-kappaB (nuclear factor kappaB) was implicated. TNF caused maximal nuclear translocation of NF-kappaB within 15 min, compared with 1 h in cells pretreated with MitoVit E. Thus the accumulation of an antioxidant within the mitochondrial matrix enhances TNF-induced apoptosis by decreasing or delaying the expression of the protective antiapoptotic proteins. These results demonstrate that mitochondrial ROS production is a physiologically relevant component of the TNF signal-transduction pathway during apoptosis, and reveal a novel functional role for mitochondrial ROS as a temporal regulator of NF-kappaB activation and NF-kappaB-dependent antiapoptotic signalling.

SUBMITTER: Hughes G 

PROVIDER: S-EPMC1184540 | biostudies-other | 2005 Jul

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC2812109 | biostudies-literature
| S-EPMC1133461 | biostudies-other
| S-EPMC1223204 | biostudies-other
| S-EPMC1276939 | biostudies-literature
| S-EPMC7147093 | biostudies-literature
| S-EPMC1221688 | biostudies-other
| S-EPMC2519710 | biostudies-literature
| S-EPMC5391362 | biostudies-literature
| S-EPMC5545697 | biostudies-literature
| S-EPMC2650442 | biostudies-literature