Unknown

Dataset Information

0

The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential.


ABSTRACT: 1. The magnitude of the protonmotive force in respiring bovine heart submitochondrial particles was estimated. The membrane-potential component was determined from the uptake of S14CN-ions, and the pH-gradient component from the uptake of [14C]methylamine. In each case a flow-dialysis technique was used to monitor uptake. 2. With NADH as substrate the membrane potential was approx. 145mV and the pH gradient was between 0 and 0.5 unit when the particles were suspended in a Pi/Tris reaction medium. The addition of the permeant NO3-ion decreased the membrane potential with a corresponding increase in the pH gradient. In a medium containing 200mM-sucrose, 50mM-KCl and Hepes as buffer, the total protonmotive force was 185mV, comprising a membrane potential of 90mV and a pH gradient of 1.6 units. Thus the protonmotive force was slightly larger in the high-osmolarity medium. 3. The phosphorylation potential (= deltaG0' + RT ln[ATP]/[ADP][Pi]) was approx. 43.1 kJ/mol (10.3kcal/mol) in all the reaction media tested. Comparison of this value with the protonmotive force indicates that more than 2 and up to 3 protons must be moved across the membrane for each molecule of ATP synthesized by a chemiosmotic mechanism. 4. Succinate generated both a protonmotive force and a phosphorylation potential that were of similar magnitude to those observed with NADH as substrate. 5. Although oxidation of NADH supports a rate of ATP synthesis that is approximately twice that observed with succinate, respiration with either of these substrates generated a very similar protonmotive force. Thus there seemed to be no strict relation between the size of the protonmotive force and the phosphorylation rate. 6. In the presence of antimycin and/or 2-n-heptyl-4-hydroxyquinoline N-oxide, ascorbate oxidation with either NNN'N'-tetramethyl-p-phenylenediamine or 2,3,5,6-tetramethyl-p-phenylenediamine as electron mediator generated a membrane potential of approx. 90mV, but no pH gradient was detected, even in the presence of NO3-. These data are discussed with reference to the proposal that cytochrome oxidase contains a proton pump.

SUBMITTER: Sorgato MC 

PROVIDER: S-EPMC1185904 | biostudies-other | 1978 Jul

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC1161984 | biostudies-other
| S-EPMC1183764 | biostudies-other
| S-EPMC1185905 | biostudies-other
| S-EPMC1161700 | biostudies-other
| S-EPMC1132405 | biostudies-other
| S-EPMC1161965 | biostudies-other
| S-EPMC1161027 | biostudies-other
| S-EPMC2729267 | biostudies-literature
| S-EPMC7132214 | biostudies-literature
| S-EPMC1164608 | biostudies-other