Studies on horseradish peroxidase in dimethyl sulphoxide/water mixtures. The activation of hydrogen peroxide and the binding of fluoride.
Ontology highlight
ABSTRACT: We studied the variation in spectra and in reactivity towards H2O2 of solutions of horseradish peroxidase in dimethyl sulphoxide/water mixtures, obtained by diluting stock solutions of the enzyme in either water or dimethyl sulphoxide, and assayed the enzyme activity and studied the binding of F- by the peroxidase in 65% (v/v) dimethyl sulphoxide. A broadly similar pattern of changes is observed whether one starts from water or from dimethyl sulphoxide; the changes are essentially reversible, though hysteresis is observed. When the dimethyl sulphoxide content of the solvent mixture is increased, the peroxidase retains its ability to activate H2O2 up to 74% (v/v) dimethyl sulphoxide. The peroxidase in 65% (v/v) dimethyl sulphoxide binds F- together with a proton (or the equivalent loss of HO-), as already established for aqueous solutions. We point out that the occurrence in such solutions of both the ability to activate H2O2 and the inability to bind F- without taking up H+ or losing HO- supports the proposed mechanism for activating H202, whereby the protein binds the substrate in the form of the much more reactive HO2-.
SUBMITTER: Adams PA
PROVIDER: S-EPMC1186624 | biostudies-other | 1979 May
REPOSITORIES: biostudies-other
ACCESS DATA