Rat small-intestinal beta-galactosidases. Kinetic studies with three separated fractions.
Ontology highlight
ABSTRACT: 1. Three fractions of beta-galactosidase activity from the rat small-intestinal mucosa were separated chromatographically. Two of these fractions had an acid pH optimum at 3-4, and the third one had a more neutral pH optimum at 5.7. 2. The two ;acid' beta-galactosidase fractions had considerably lower K(m) values for hetero beta-galactosides than for lactose. The V(max.) values were similar for all the substrates used (lactose, phenyl beta-galactoside, o-nitrophenyl beta-galactoside, p-nitrophenyl beta-galactoside and 6-bromo-2-naphthyl beta-galactoside). No difference could be detected between the two ;acid' fractions with respect to their enzymic properties (pH optimum, K(m) for the different substrates, K(i) for lactose as an inhibitor of the hydrolysis of hetero beta-galactosides, K(i) for phenyl beta-galactoside as an inhibitor of the hydrolysis of lactose, and relative V(max.) for the hydrolysis of different substrates). These two fractions probably represent different forms of the same enzyme. 3. The ;neutral' fraction had similar K(m) values for all the substrates hydrolysed, but with lactose as substrate the V(max.) was much higher than with the hetero beta-galactosides. This fraction did not split phenyl beta-galactoside or 6-bromo-2-naphthyl beta-galactoside at a measurable rate. 4. Lactose was a competitive inhibitor of the hetero beta-galactosidase activities of all the three fractions, and K(i) for lactose as an inhibitor in each case was the same as K(m) for the lactase activity. Phenyl beta-galactoside was a competitive inhibitor of the lactase activity of all the three fractions. These facts strongly indicate that in all the three fractions lactose is hydrolysed by the same active sites as the hetero beta-galactosides. 5. Human serum albumin stabilized the separated enzymes against inactivation by freezing and thawing.
SUBMITTER: Asp NG
PROVIDER: S-EPMC1187119 | biostudies-other | 1968 Nov
REPOSITORIES: biostudies-other
ACCESS DATA