Synthesis of ribonucleic acid in normal bone in vitro.
Ontology highlight
ABSTRACT: 1. The incorporation of [2-(14)C]uridine into nucleic acids of bone cells was studied in rat and pig trabecular-bone fragments surviving in vitro. 2. The rapid uptake of uridine into trichloroacetic acid-soluble material, and its subsequent incorporation into a crude nucleic acid fraction of bone or purified RNA extracted from isolated bone cells, was proportional to uridine concentration in the incubation medium over a range 0.5-20.0mum. 3. During continued exposure to radioactive uridine, bulk RNA became labelled in a curvilinear fashion. Radioactivity rapidly entered nuclear RNA, which approached its maximum specific activity by 2hr. of incubation; cytoplasmic RNA, and particularly microsomal RNA, was more slowly labelled. The kinetics of labelling and rapid decline of the nuclear/microsomal specific activity ratio were consistent with a precursor-product relationship. 4. Bulk RNA preparations were resolved by zonal centrifugation in sucrose density gradients into components with approximate sedimentation coefficients 28s, 18s and 4s. 5. Rapidly labelled RNA, predominantly nuclear in location, demonstrated a polydisperse sedimentation pattern that did not conform to the major types of stable cellular RNA. Material of highest specific activity, sedimenting in the 4-18s region and insoluble in 10% (w/v) sodium chloride, rapidly achieved its maximum activity during continued exposure to radioactive precursor and decayed equally rapidly during ;chase' incubation, exhibiting an average half-life of 4.3hr. 6. Ribosomal 28s and 18s RNA were of lower specific activity, which increased linearly for at least 6hr. in the continued presence of radioactive uridine. There was persistent but variable incorporation into ribosomal RNA during ;chase' incubation despite rapid decline in total radioactivity of the acid-soluble pool containing RNA precursors.
SUBMITTER: Steinberg J
PROVIDER: S-EPMC1198386 | biostudies-other | 1967 Nov
REPOSITORIES: biostudies-other
ACCESS DATA