Transposon-disruption of a maize nuclear gene, tha1, encoding a chloroplast SecA homologue: in vivo role of cp-SecA in thylakoid protein targeting.
Ontology highlight
ABSTRACT: A nuclear mutant of maize, tha1, which exhibited defects in the translocation of proteins across the thylakoid membrane, was described previously. A transposon insertion at the tha1 locus facilitated the cloning of portions of the tha1 gene. Strong sequence similarity with secA genes from bacteria, pea and spinach indicates that tha1 encodes a SecA homologue (cp-SecA). The tha1-ref allele is either null or nearly so, in that tha1 mRNA is undetectable in mutant leaves and cp-SecA accumulation is reduced > or = 40-fold. These results, in conjunction with the mutant phenotype described previously, demonstrate that cp-SecA functions in vivo to facilitate the translocation of OEC33, PSI-F and plastocyanin but does not function in the translocation of OEC23 and OEC16. Our results confirm predictions for cp-SecA function made from the results of in vitro experiments and establish several new functions for cp-SecA, including roles in the targeting of a chloroplast-encoded protein, cytochrome f, and in protein targeting in the etioplast, a nonphotosynthetic plastid type. Our finding that the accumulation of properly targeted plastocyanin and cytochrome f in tha1-ref thylakoid membranes is reduced only a few-fold despite the near or complete absence of cp-SecA suggests that cp-SecA facilitates but is not essential in vivo for their translocation across the membrane.
SUBMITTER: Voelker R
PROVIDER: S-EPMC1207810 | biostudies-other | 1997 Feb
REPOSITORIES: biostudies-other
ACCESS DATA