Recombination creates novel L1 (LINE-1) elements in Rattus norvegicus.
Ontology highlight
ABSTRACT: Mammalian L1 (long interspersed repeated DNA. LINE-1) retrotransposons consist of a 5' untranslated region (UTR) with regulatory properties, two protein encoding regions (ORF I, ORF II, which encodes a reverse transcriptase) and a 3' UTR. L1 elements have been evolving in mammals for > 100 million years and this process continues to generate novel L1 subfamilies in modern species. Here we characterized the youngest known subfamily in Rattus norvegicus, L1mlvi2, and unexpectedly found that this element has a dual ancestry. While its 3' UTR shares the same lineage as its nearest chronologically antecedent subfamilies, L13 and L14, its ORF I sequence does not. The L1mlvi2 ORF I was derived from an ancestral ORF I sequence that was the evolutionary precursor of the L13 and L14 ORF I. We suggest that an ancestral ORF I sequence was recruited into the modern L1mlvi2 subfamily by recombination that possibly could have resulted from template strand switching by the reverse transcriptase during L1 replication. This mechanism could also account for some of the structural features of rodent L1 5' UTR and ORF I sequences including one of the more dramatic features of L1 evolution in mammals, namely the repeated acquisition of novel 5' UTRs.
SUBMITTER: Hayward BE
PROVIDER: S-EPMC1208004 | biostudies-other | 1997 Jun
REPOSITORIES: biostudies-other
ACCESS DATA