Unknown

Dataset Information

0

Influence of amino acid residue 374 of cytochrome P-450 2D6 (CYP2D6) on the regio- and enantio-selective metabolism of metoprolol.


ABSTRACT: Cytochrome P-450 2D6 (CYP2D6) is an important human drug-metabolizing enzyme responsible for the oxidation of more than 30 widely used therapeutic agents. The enzymes encoded by the published genomic [Kimura, Umeno, Skoda, Meyer and Gonzalez (1989) Am. J. Hum. Genet. 45, 889-904] and cDNA [Gonzalez, Skoda, Kimura, Umeno, Zanger, Nebert, Gelboin, Hardwick and Meyer (1988) Nature 331, 442-446] sequences of CYP2D6, and presumed to represent wild-type sequences, differ at residue 374 and encode valine (CYP2D6-Val) and methionine (CYP2D6-Met) respectively. The influence of this amino acid difference on cytochrome P-450 expression, ligand binding, catalysis and stereoselective oxidation of metoprolol was investigated by the heterologous expression of the corresponding cDNAs in the yeast Saccharomyces cerevisiae. The level of expression of apo- and holo-protein was similar with each form of CYP2D6 cDNA, and the binding affinities of a series of ligands to CYP2D6-Val and CYP2D6-Met were identical. The enantioselective O-demethylation and alpha-hydroxylation of metoprolol were also similar with each form of CYP2D6, O-demethylation being R-(+)- enantioselective (CYP2D6-Val: R/S, 1.6; CYP2D6-Met: R/S, 1.4), whereas alpha-hydroxylation showed a preference for S-(-)-metoprolol (CYP2D6-Val: R/S, 0.7; CYP2D6-Met: R/S, 0.8). However, although the favoured regiomer overall was O-demethylmetoprolol (ODM), the regioselectivity for O-demethylation of each metoprolol enantiomer was significantly greater for CYP2D6-Val [R-(+)-: ODM/alpha-hydroxymetoprolol (alpha OH), 5.9; S-(-)-: ODM/alpha OH, 2.5) than that observed for CYP2D6-Met [R-(+)-: ODM/alpha OH, 2.2; S-(-)-: ODM/alpha OH, 1.4]. The stereoselective properties of CYP2D6-Val were consistent with those observed for CYP2D6 in human liver microsomes. The difference in the stereoselective properties of CYP2D6-Val and CYP2D6-Met were rationalized with respect to a homology model of the active site of CYP2D6 based on an alignment with the crystal structure of the bacterial cytochrome P-450BM-3' CYP102.

SUBMITTER: Ellis SW 

PROVIDER: S-EPMC1217396 | biostudies-other | 1996 Jun

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC5253974 | biostudies-literature
| S-EPMC1224698 | biostudies-literature
| S-EPMC6804407 | biostudies-literature
| S-EPMC9290485 | biostudies-literature
| S-EPMC4025842 | biostudies-literature
| S-EPMC4244597 | biostudies-literature
| S-EPMC4335244 | biostudies-literature
| S-EPMC6732280 | biostudies-literature
| S-EPMC3916516 | biostudies-literature
| S-EPMC3289963 | biostudies-literature