Unknown

Dataset Information

0

DNA polymerase beta: analysis of the contributions of tyrosine-271 and asparagine-279 to substrate specificity and fidelity of DNA replication by pre-steady-state kinetics.


ABSTRACT: DNA polymerase beta (pol beta) from rat brain, overexpressed in Escherichia coli, was used as a model to study the factors responsible for substrate specificity [kpol, Kd(app) and kpol/Kd(app)] and fidelity during DNA synthesis. The roles of two active-site residues, Asn-279 and Tyr-271, were examined by construction of N279A, N279Q, Y271A, Y271F and Y271S mutants followed by structural analyses by NMR and CD and functional analyses by pre-steady-state kinetics. The results are summarized as follows. (i) None of the two-dimensional NMR spectra of the mutants was significantly perturbed relative to that for wild-type pol beta, suggesting that Tyr-271 and Asn-279 are not important for the global structure of the protein. (ii) CD analyses of guanidinium hydrochloride-induced denaturation showed that all mutants behaved similarly to the wild type in the free energy of denaturation, suggesting that Tyr-271 and Asn-279 are not critical for the conformational stability of pol beta. (iii) The Kd(app) for the correct dNTP was lower than that for the incorrect dNTP by a factor of 10-30 in the case of wild-type pol beta. Upon mutation to give N279A and N279Q, the Kd(app) for the correct dNTP increased by a factor of 15-25. As a consequence, the Kd(app) values for the correct and incorrect nucleotides were similar for N279A and N279Q, suggesting that the main function of the side chain of Asn-279 is in discrimination between the binding of correct and incorrect dNTPs. (iv) In the case of the Y271A mutant, the fidelity and the catalytic efficiency kpol/Kd(app) were little perturbed relative to the wild type. However, both the kpol and Kd(app) values for dNTP were 4-8 times lower in the case of the Y271A mutant than the corresponding values for wild-type pol beta. Since the chemical step may not be rate-limiting for wild-type pol beta, the effect on kpol could be quite significant if it is caused by a perturbation in the chemical step. (v) Pol beta displayed the greatest specificity towards the G:C base pair, which is incorporated during base excision repair of G:U and G:T mispairs. This specificity was slightly enhanced for the Y271F mutant.

SUBMITTER: Kraynov VS 

PROVIDER: S-EPMC1218280 | biostudies-other | 1997 Apr

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC2803633 | biostudies-literature
| S-EPMC4018061 | biostudies-literature
| S-EPMC6954441 | biostudies-literature
| S-EPMC3624615 | biostudies-literature
| S-EPMC7145665 | biostudies-literature
| S-EPMC5340169 | biostudies-literature
| S-EPMC1925234 | biostudies-literature
| S-EPMC5989577 | biostudies-literature
| S-EPMC4019591 | biostudies-literature
| S-EPMC2964193 | biostudies-literature