The relationship of oxygen delivery to absolute haemoglobin oxygenation and mitochondrial cytochrome oxidase redox state in the adult brain: a near-infrared spectroscopy study.
Ontology highlight
ABSTRACT: Near-infrared spectroscopy was used to determine the effect of changes in the rate of oxygen delivery to the adult rat brain on the absolute concentrations of oxyhaemoglobin, deoxyhaemoglobin and the redox state of the CuA centre in mitochondrial cytochrome oxidase. The cytochrome oxidase detection algorithm was determined to be robust to large changes in haemoglobin oxygenation and concentration. By assuming complete haemoglobin deoxygenation and CuA reduction following mechanical ventilation on 100% N2O, the absolute concentration of oxyhaemoglobin (35 microM), deoxyhaemoglobin (27 microM) and the redox state of CuA (82% oxidized) were calculated in the normal adult brain. The mean arterial blood pressure was decreased by exsanguination. When the pressure reached 100 mmHg, haemoglobin oxygenation started to fall, but the total haemoglobin concentration and oxidized CuA levels only fell when cerebral blood volume autoregulation mechanisms failed at 50 mmHg. Haemoglobin oxygenation fell linearly with decreases in the rate of oxygen delivery to the brain, but the oxidized CuA concentration did not start to fall until this rate was 50% of normal. The results suggest that the brain maintains more than adequate oxygen delivery to mitochondria and that near-infrared spectroscopy may be a good measure of oxygen insufficiency in vivo.
SUBMITTER: Cooper CE
PROVIDER: S-EPMC1219521 | biostudies-other | 1998 Jun
REPOSITORIES: biostudies-other
ACCESS DATA