Increased choline transport in erythrocytes from mice infected with the malaria parasite Plasmodium vinckei vinckei.
Ontology highlight
ABSTRACT: Parasitized erythrocytes from mice infected with the murine malaria parasite Plasmodium vinckei vinckei showed a marked increase in the rate of influx of choline compared with erythrocytes from uninfected mice. In contrast, uninfected erythrocytes from P. vinckei-infected animals transported choline at the same rate as those from uninfected mice. The increased influx of choline into parasitized cells was via two discrete routes. One was a saturable pathway with a Km similar to that of the choline carrier of normal erythrocytes but a Vmax approx. 20-fold higher than that observed in uninfected cells. The other was a non-saturable pathway inhibited by furosemide. At choline concentrations within the normal physiological plasma concentration range, the former pathway contributed approx. two-thirds and the latter approx. one-third of the influx of choline into parasitized cells. The characteristics of the furosemide-sensitive pathway were similar to those of a broad-specificity pathway that is induced in human erythrocytes infected in vitro with Plasmodium falciparum. The results of this study rule out the possibility that the induced transport pathway of P. falciparum-infected erythrocytes is an artifact arising in vitro from the long-term culture of parasitized cells and provide evidence that this pathway makes a significant contribution to the uptake of choline into the parasitized cells of malaria-infected animals.
Project description:Human erythrocytes infected in vitro with the malaria parasite Plasmodium falciparum showed a markedly increased rate of choline influx compared with normal cells. Choline transport into uninfected cells (cultured in parallel with infected cells) obeyed Michaelis-Menten kinetics (Km approximately 11 microM). In malaria-parasite-infected cells there was an additional choline-transport component which failed to saturate at extracellular concentrations of up to 500 microM. This component was less sensitive than the endogenous transporter to inhibition by the Cinchona bark alkaloids quinine, quinidine, cinchonine and cinchonidine, but showed a much greater sensitivity than the native system to inhibition by piperine. The sensitivity of the induced choline transport to these reagents was similar to that of the malaria-induced (ouabain- and bumetanide-resistant) Rb(+)-transport pathway; however, the relative magnitudes of the piperine-sensitive choline and Rb+ fluxes in malaria-parasite-infected cells varied between cultures. This suggests either that the enhanced transport of the two cations was via functionally distinct (albeit pharmacologically similar) pathways, or that the transport was mediated by a pathway with variable substrate selectivity.
Project description:Malaria elimination is still pending on the development of novel tools that rely on a deep understanding of parasite biology. Proteins of all living cells undergo myriad posttranslational modifications (PTMs) that are critical to multifarious life processes. An extensive proteome-wide dissection revealed a fine PTM map of most proteins in both Plasmodium falciparum, the causative agent of severe malaria, and the infected red blood cells. More than two-thirds of proteins of the parasite and its host cell underwent extensive and dynamic modification throughout the erythrocytic developmental stage. PTMs critically modulate the virulence factors involved in the host-parasite interaction and pathogenesis. Furthermore, P. falciparum stabilized the supporting proteins of erythrocyte origin by selective demodification. Collectively, our multiple omic analyses, apart from having furthered a deep understanding of the systems biology of P. falciparum and malaria pathogenesis, provide a valuable resource for mining new antimalarial targets.
Project description:BackgroundPrevious comparative proteomic analysis on Plasmodium falciparum isolates of different adhesion properties suggested that protein phosphorylation varies between isolates with different cytoadherence properties. But the extent and dynamic changes in phosphorylation have not been systematically studied. As a baseline for these future studies, this paper examined changes in the phosphoproteome of parasitized red blood cells (pRBC).MethodsMetabolic labelling with [35S] methionine on pRBC and 2D gel electrophoresis (2-DE) has previously been used to show the expression of parasite proteins and changes in protein iso-electric point (PI). 2-DE of different parasite strains was combined with immunoblotting using monoclonal antibodies specifically to phosphorylated serine/threonine and tyrosine, to obtain the phosphorylation profiles throughout the erythrocytic lifecycle. Affinity chromatography was used to purify/enrich phosphorylated proteins and these proteins from mature trophozoite stages which were identified using high-accuracy mass spectrometry and MASCOT search.Results2D-immunoblots showed that P. falciparum infection greatly increased phosphorylation of a set of proteins in pRBC, the dominant size classes for phosphorylated tyrosine proteins were 95, 60, 50 and 30 kDa and for phosphorylated serine/threonine were 120, 95, 60, 50, 43, 40 and 30 kDa. The most abundant molecules from 2D-gel mapping of phosphorylated proteins in ItG infected RBCs were identified by MALDI-TOF. A proteomic overview of phosphorylated proteins in pRBC was achieved by using complementary phosphorylated protein enrichment techniques combined with nano-flow LC/MS/MS analysis and MASCOT MS/MS ions search with phosphorylation as variable modifications. The definite phosphoproteins of pRBC are reported and discussed.ConclusionProtein phosphorylation is a major process in P. falciparum-parasitized erythrocytes. Preliminary screens identified 170 P. falciparum proteins and 77 human proteins as phosphorylated protein in pRBC, while only 48 human proteins were identified in the corresponding fractions from uninfected RBC. Refinement of the search to include significant ion scores indicating a specific phospho-peptide identified 21 P. falciparum proteins and 14 human proteins from pRBC, 13 host proteins were identified from normal RBC. The results achieved by complementary techniques consistently reflect a reliable proteomic overview of pRBC.
Project description:The altered permeability characteristics of erythrocytes infected with malaria parasites have been a source of interest for over 30 years. Recent electrophysiological studies have provided strong evidence that these changes reflect transmembrane transport through ion channels in the host erythrocyte plasma membrane. However, conflicting results and differing interpretations of the data have led to confusion in this field. In an effort to unravel these issues, the groups involved recently came together for a week of discussion and experimentation. In this article, the various models for altered transport are reviewed, together with the areas of consensus in the field and those that require a better understanding.
Project description:Casein kinase 1 (CK1) is a pleiotropic protein kinase implicated in several fundamental processes of eukaryotic cell biology. Plasmodium falciparum encodes a single CK1 isoform, PfCK1, that is expressed at all stages of the parasite's life cycle. We have previously shown that the pfck1 gene cannot be disrupted, but that the locus can be modified if no loss-of-function is incurred, suggesting an important role for this kinase in intra-erythrocytic asexual proliferation. Here, we report on the use of parasite lines expressing GFP- or His-tagged PfCK1 from the endogenous locus to investigate (i) the dynamics of PfCK1 localisation during the asexual cycle in red blood cells, and (ii) potential interactors of PfCK1, so as to gain insight into the involvement of the enzyme in specific cellular processes. Immunofluorescence analysis reveals a dynamic localisation of PfCK1, with evidence for a pool of the enzyme being directed to the membrane of the host erythrocyte in the early stages of infection, followed by a predominantly intra-parasite localisation in trophozoites and schizonts and association with micronemes in merozoites. Furthermore, we present strong evidence that a pool of enzymatically active PfCK1 is secreted into the culture supernatant, demonstrating that PfCK1 is an ectokinase. Our interactome experiments and ensuing kinase assays using recombinant PfCK1 to phosphorylate putative interactors in vitro suggest an involvement of PfCK1 in many cellular processes such as mRNA splicing, protein trafficking, ribosomal, and host cell invasion.
Project description:Plasmodium falciparum, a lethal protozoan, undergoes a complex extra- and intraerythrocytic development cycle that requires intricate and flexible regulatory mechanisms in order to facilitate reproduction and maintain the parasite’s resistance to environmental stress. Protein post-translational modifications (PTMs) are essential processes following protein biogenesis that allow proteins to fulfill their diverse biological functions. Here, we present comprehensive PTMomic profiling of both P. falciparum and its erythrocytic host cells during the 48 hours after infection. Fine mappings of each protein in both P. falciparum and the infected red blood cells (pRBCs) were accomplished. More than two-thirds of the parasite and its host cell proteins underwent extensive and dynamic modification throughout the erythrocytic developmental stage of the malarial parasite. Apart from the finding that PTMs actively regulated P. falciparum gene activation and silencing, the key molecules involved in the host-parasite interaction and pathogenesis were essentially modified. The establishment of an atlas of PTMomes of P. falciparum and its host erythrocytes will promote a deeper understanding of the parasite biology and will provide a basis for the search for novel antimalarials.
Project description:Plasmodium falciparum is the major cause of malaria globally and is transmitted by mosquitoes. During parasitic development, P. falciparum-infected erythrocytes (P. falciparum-IEs) express multiple polymorphic proteins known as variant surface antigens (VSAs), including the P. falciparum erythrocyte membrane protein 1 (PfEMP1). VSA-specific antibodies are associated with protection from symptomatic and severe malaria. However, the importance of the different VSA targets of immunity to malaria remains unclear, which has impeded an understanding of malaria immunity and vaccine development. In this study, we developed assays using transgenic P. falciparum with modified PfEMP1 expression to quantify serum antibodies to VSAs among individuals exposed to malaria. We found that the majority of the human antibody response to the IE targets PfEMP1. Furthermore, our longitudinal studies showed that individuals with PfEMP1-specific antibodies had a significantly reduced risk of developing symptomatic malaria, whereas antibodies to other surface antigens were not associated with protective immunity. Using assays that measure antibody-mediated phagocytosis of IEs, an important mechanism in parasite clearance, we identified PfEMP1 as the major target of these functional antibodies. Taken together, these data demonstrate that PfEMP1 is a key target of humoral immunity. These findings advance our understanding of the targets and mediators of human immunity to malaria and have major implications for malaria vaccine development.
Project description:Merozoites of malaria parasites invade red blood cells (RBCs), where they multiply by schizogony, undergoing development through ring, trophozoite and schizont stages that are responsible for malaria pathogenesis. Here, we report that a protein kinase-mediated signalling pathway involving host RBC PAK1 and MEK1, which do not have orthologues in the Plasmodium kinome, is selectively stimulated in Plasmodium falciparum-infected (versus uninfected) RBCs, as determined by the use of phospho-specific antibodies directed against the activated forms of these enzymes. Pharmacological interference with host MEK and PAK function using highly specific allosteric inhibitors in their known cellular IC50 ranges results in parasite death. Furthermore, MEK inhibitors have parasiticidal effects in vitro on hepatocyte and erythrocyte stages of the rodent malaria parasite Plasmodium berghei, indicating conservation of this subversive strategy in malaria parasites. These findings have profound implications for the development of novel strategies for antimalarial chemotherapy.
Project description:Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), expressed on P. falciparum-infected erythrocytes, is a major family of clonally variant targets of naturally acquired immunity to malaria. Previous studies have demonstrated that in areas where malaria is endemic, antibodies to infected erythrocytes from children with severe malaria tend to be more seroprevalent than antibodies to infected erythrocytes from children with nonsevere malaria. These data have led to a working hypothesis that PfEMP1 variants associated with parasite virulence are relatively conserved in structure. However, the longevity of such serologically conserved variants in the parasite population is unknown. Here, using infected erythrocytes from recently sampled clinical P. falciparum samples, we measured serological conservation using pools of antibodies in sera that had been sampled 10 to 12 years earlier. The serological conservation of infected erythrocytes strongly correlated with the expression of specific PfEMP1 subsets previously found to be associated with severe malaria. However, we found no association between serological conservation per se and disease severity within these data. This contrasts with the simple hypothesis that P. falciparum isolates with a serologically conserved group of PfEMP1 variants cause severe malaria. The data are instead consistent with periodic turnover of the immunodominant epitopes of PfEMP1 associated with severe malaria.
Project description:The permeability of simian erythrocytes to choline was found to be considerably increased after infection by the malaria parasite, Plasmodium knowlesi. Choline entry occurs by a facilitated-diffusion system involving a carrier, which displays temperature-dependence, saturability with choline (Km = 8.5 +/- 0.7 microM) and specificity. This carrier can also be inhibited by a thiol reagent, N-ethylmaleimide, at an inactivation rate which is, in the absence of choline, the same as in normal erythrocytes. Inactivation by N-ethylmaleimide can be accelerated by external choline and prevented by decamethonium, which acts as an inhibitor of choline entry in infected cells (as with dodecyltrimethylammonium). Both ethanolamine and imidazole act as inhibitors or activators of choline entry in infected erythrocytes, depending on the relative concentrations of choline and of the competing compound (i.e. ethanolamine or imidazole). After infection, the maximum velocity reached 2.84 +/- 0.5 nmol/min per 10(10) infected cells, which is more than 10 times the Vmax. of normal erythrocytes. Impairing the biosynthesis of phosphatidylcholine de novo in Plasmodium-infected erythrocytes by various methods (glucose or ATP depletion, high ethanolamine concentrations) did not result in any alteration of choline transport (Km or Vmax.), indicating that the constant triggering and transformation of choline into phosphatidylcholine by the parasite is not directly responsible for the increase in the choline transport rate after infection. This high increase in choline transport activity is more likely related to modifications in choline carriers and/or in their environment after Plasmodium infection.