Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells.
Ontology highlight
ABSTRACT: Sphingosine and other long-chain bases (including sphinganine, dimethylsphingosine and stearylamine), but not octylamine (a short-chain analogue of sphinganine), induced apoptosis in Hep3B hepatoma cells. Because both D- and L-erythrosphingosine and stearylamine exert potent apoptotic effects on Hep3B cells, it is possible that these long-chain bases may activate apoptosis by inhibiting protein kinase C (PKC) activity. However, pretreatment with the PKC activator PMA could not rescue cells from apoptosis triggered by long-chain bases. Therefore the involvement of PKC in this apoptotic process requires further characterization. We also investigated whether these long-chain bases might be metabolized into ceramide in order to elicit their apoptotic action. We found that long-chain bases acted independently of ceramide in the induction of apoptosis, since addition of fumonisin B1, a fungal agent which effectively inhibits ceramide synthesis from sphingosine, did not protect against apoptosis. Additionally, we found that sphingosine-induced apoptosis was accompanied by activation of caspases. The functional role of caspases in this apoptotic process was examined by using specific caspase inhibitors. The general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone, which exhibits a broad specificity for caspase-family proteases, effectively blocked sphingosine-induced apoptosis. Furthermore, our results indicate that caspase-3-like proteases, but not caspase-1, are activated during apoptosis triggered by sphingosine. Enhancement of caspase-3-like activity and cleavage of poly(ADP-ribose) polymerase, an in vivo substrate for caspase-3, was clearly demonstrated in sphingosine-treated Hep3B cells. Considered together, these results suggest that caspase-3-like proteases participate in apoptotic cell death induced by sphingosine.
SUBMITTER: Hung WC
PROVIDER: S-EPMC1220038 | biostudies-other | 1999 Feb
REPOSITORIES: biostudies-other
ACCESS DATA