Biochemical characterization of Bacillus thuringiensis cytolytic toxins in association with a phospholipid bilayer.
Ontology highlight
ABSTRACT: The interaction of two Bacillus thuringiensis cytolytic toxins, CytA and CytB, with a phospholipid bilayer and their structure in the membrane-bound state were investigated by proteolysis using phospholipid vesicles as a model system. A toxin conformational change upon membrane binding was detected by comparing the proteolytic profile of membrane-bound toxin and saline-solubilized toxin. When membrane-bound toxin was exposed to protease K or trypsin, novel cleavage sites were found between the alpha-helical N-terminal half and beta-strand C-terminal half of the structure at K154 and N155 in CytA and at I150 and G141 in CytB. N-terminal sequencing of membrane-protected fragments showed that the C-terminal half of the toxin structure comprising mainly beta-strands was inserted into the membrane, whereas the N-terminal half comprising mainly alpha-helices was exposed on the outside of the liposomes and could be removed when liposomes with bound toxin were washed extensively after proteolysis. The C-termini of the membrane-inserted proteolytic fragments were also located by a combination of N-terminal sequencing and measurement of the molecular masses of the fragments by electrospray MS. Using a liposome glucose-release assay, the membrane-inserted structure was seen to retain its function as a membrane pore even after removal of exposed N-terminal segments by proteolysis. These data strongly suggest that the pores for glucose release are assembled from the three major beta-strands (beta-5, beta-6 and beta-7) in the C-terminal half of the toxin.
SUBMITTER: Du J
PROVIDER: S-EPMC1220041 | biostudies-other | 1999 Feb
REPOSITORIES: biostudies-other
ACCESS DATA