ABSTRACT: The involvement of p44/42 mitogen-activated protein kinase (MAPK) in the induction of ornithine decarboxylase (ODC) was investigated by using PD98059, a specific MAPK-kinase (MEK1/2) inhibitor, and other signal-transduction inhibitors. In d,l-alpha-difluoromethylornithine (DFMO)-resistant L1210 cells stimulated to grow from quiescence, treatment with PD98059 inhibited p44/42 MAPK phosphorylation and the induction of ODC activity and protein. A marked reduction of the accumulation of mature ODC mRNA and its intron-containing precursor was observed, whereas ODC turnover was hardly affected. PD98059 also reduced the content of antizyme, but not that of antizyme mRNA. U0126, a novel and more potent inhibitor of MEK1/2, provoked a dose-dependent inhibition of ODC induction at lower concentrations with respect to PD98059. Other effective inhibitors of ODC induction proved to be genistein, manumycin A, herbimycin A, LY294002, wortmannin and KT5823, suggesting the involvement of other key proteins of signal-transduction pathways, i.e. Ras, Src, phosphatidylinositol 3-kinase and cGMP-dependent protein kinase, which may have a positive impact on MAPK. Cells kept in a DFMO-free medium, and thus containing high levels of putrescine and spermidine, showed enhanced MAPK phosphorylation and lower sensitivity to PD98059, compared with cells maintained in the presence of DFMO. In conclusion, these results indicate that the activation of p44/42 MAPK may favour the expression of ODC, and that polyamines, in turn, may affect the phosphorylation state of MAPK.