Long-chain fatty acids regulate liver carnitine palmitoyltransferase I gene (L-CPT I) expression through a peroxisome-proliferator-activated receptor alpha (PPARalpha)-independent pathway.
Ontology highlight
ABSTRACT: Liver carnitine palmitoyltransferase I (L-CPT I) catalyses the transfer of long-chain fatty acid (LCFA) for translocation across the mitochondrial membrane. Expression of the L-CPT I gene is induced by LCFAs as well as by lipid-lowering compounds such as clofibrate. Previous studies have suggested that the peroxisome-proliferator-activated receptor alpha (PPARalpha) is a common mediator of the transcriptional effects of LCFA and clofibrate. We found that free LCFAs rather than acyl-CoA esters are the signal metabolites responsible for the stimulation of L-CPT I gene expression. Using primary culture of hepatocytes we found that LCFAs failed to stimulate L-CPT I gene expression both in wild-type and PPARalpha-null mice. These results suggest that the PPARalpha-knockout mouse does not represent a suitable model for the regulation of L-CPT I gene expression by LCFAs in the liver. Finally, we determined that clofibrate stimulates L-CPT I through a classical direct repeat 1 (DR1) motif in the promoter of the L-CPT I gene while LCFAs induce L-CPT I via elements in the first intron of the gene. Our results demonstrate that LCFAs can regulate gene expression through PPARalpha-independent pathways and suggest that the regulation of gene expression by dietary lipids is more complex than previously proposed.
SUBMITTER: Louet JF
PROVIDER: S-EPMC1221643 | biostudies-other | 2001 Feb
REPOSITORIES: biostudies-other
ACCESS DATA