Unknown

Dataset Information

0

Characterization of the reaction mechanism for the XL-I form of bovine liver xenobiotic/medium-chain fatty acid:CoA ligase.


ABSTRACT: The XL-I form of xenobiotic/medium-chain fatty acid:CoA ligase was purified to apparent homogeneity from bovine liver mitochondria and used to determine the reaction mechanism. A tersubstrate kinetic analysis was conducted by varying the concentrations of ATP, benzoate and CoA in turn. Both ATP and benzoate gave parallel double-reciprocal plots against CoA, which indicates a Ping Pong mechanism, with either pyrophosphate or AMP leaving before the binding of CoA. Addition of pyrophosphate to the assays changed the plots from parallel to intersecting; addition of AMP did not. This indicates that pyrophosphate is the product that leaves before binding of CoA. Based on end-product inhibition studies, it was concluded that the reaction follows a Bi Uni Uni Bi Ping Pong mechanism, with ATP binding first, followed in order by benzoate binding, pyrophosphate release, CoA binding, benzoyl-CoA release and AMP release. A similar mechanism was obtained when the ligase was examined with butyrate as substrate. However, butyrate activation was characterized by a much higher affinity for CoA. This is attributed to steric factors resulting from the bulkier nature of the benzoate molecule. Also, with butyrate there is a bivalent cation activation distinct from that associated with binding to ATP. This activation by excess Mg(2+) results in non-linear plots of 1/v against 1/[ATP] for butyrate unless the concentrations of Mg(2+) and ATP are varied together.

SUBMITTER: Vessey DA 

PROVIDER: S-EPMC1221953 | biostudies-other | 2001 Jul

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC4493641 | biostudies-literature
| S-EPMC8360832 | biostudies-literature
| S-EPMC3198602 | biostudies-literature
| S-EPMC1189074 | biostudies-literature
| S-EPMC9836253 | biostudies-literature
| S-EPMC5397069 | biostudies-literature
| S-EPMC8234078 | biostudies-literature
| S-EPMC7390178 | biostudies-literature
| S-EPMC4823675 | biostudies-literature
| PRJNA950190 | ENA