Colony-stimulating factor-1 (CSF-1) receptor-mediated macrophage differentiation in myeloid cells: a role for tyrosine 559-dependent protein phosphatase 2A (PP2A) activity.
Ontology highlight
ABSTRACT: M1 myeloid cells transfected with the wild-type (WT) colony-stimulating factor-1 (CSF-1) receptor (CSF-1R; M1/WT cells) undergo CSF-1-dependent macrophage differentiation. By mutation studies, we have provided prior evidence that tyrosine 559 in the CSF-1R cytoplasmic domain governs the Src-dependent differentiation pathway. Further components of this pathway were then sought. We report that the extent of CSF-1-mediated tyrosine phosphorylation of protein phosphatase 2A (PP2A), and the associated loss of its activity were reduced in M1 cells transfected with the CSF-1R with a tyrosine-to-phenylalanine mutation at position 559 (M1/559 cells), compared with the corresponding responses in CSF-1-treated M1/WT cells. This evidence for an involvement of a reduction in PP2A activity in the differentiation process was supported by the restoration of the defect in the CSF-1-mediated differentiation of M1/559 cells by the addition of the PP2A inhibitor, okadaic acid. It was also found that the degree of activation of extracellular-signal-regulated kinase (ERK) activities by CSF-1 was reduced in M1/559 cells, suggesting their involvement in the differentiation process. These data suggest that PP2A and ERK form part of the Src-dependent signal-transduction cascade governing CSF-1-mediated macrophage differentiation in M1 cells.
SUBMITTER: McMahon KA
PROVIDER: S-EPMC1222076 | biostudies-other | 2001 Sep
REPOSITORIES: biostudies-other
ACCESS DATA