Regulation of Ca2+-release-activated Ca2+ current (Icrac) by ryanodine receptors in inositol 1,4,5-trisphosphate-receptor-deficient DT40 cells.
Ontology highlight
ABSTRACT: Persistence of capacitative Ca(2+) influx in inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)-deficient DT40 cells (DT40(IP(3)R-/-)) raises the question of whether gating of Ca(2+)-release activated Ca(2+) current (I(crac)) by conformational coupling to Ca(2+)-release channels is a general mechanism of gating of these channels. In the present work we examined the properties and mechanism of activation of I(crac) Ca(2+) current in wild-type and DT40(IP(3)R-/-) cells. In both cell types passive depletion of internal Ca(2+) stores by infusion of EGTA activated a Ca(2+) current with similar characteristics and time course. The current was highly Ca(2+)-selective and showed strong inward rectification, all typical of I(crac). The activator of ryanodine receptor (RyR), cADP-ribose (cADPR), facilitated activation of I(crac), and the inhibitors of the RyRs, 8-N-cADPR, ryanodine and Ruthenium Red, all inhibited I(crac) activation in DT40(IP(3)R-/-) cells, even after complete depletion of intracellular Ca(2+) stores by ionomycin. Wild-type and DT40(IP(3)R-/-) cells express RyR isoforms 1 and 3. RyR levels were adapted in DT40(IP(3)R-/-) cells to a lower RyR3/RyR1 ratio than in wild-type cells. These results suggest that IP(3)Rs and RyRs can efficiently gate I(crac) in DT40 cells and explain the persistence of I(crac) gating by internal stores in the absence of IP(3)Rs.
SUBMITTER: Kiselyov K
PROVIDER: S-EPMC1222197 | biostudies-other | 2001 Nov
REPOSITORIES: biostudies-other
ACCESS DATA