Comparison between Ca2+-induced scrambling of various fluorescently labelled lipid analogues in red blood cells.
Ontology highlight
ABSTRACT: Treatment of red blood cells with calcium and ionomycin causes activation of the lipid scramblase, a putative membrane protein catalysing flip-flop of (phospho)lipids. Various fluorescent 1-oleoyl-2-[6(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] caproyl (C(6)-NBD) analogues were tested for transbilayer movement across the plasma membrane of red blood cells. Among these phospholipid analogues were phosphatidylgalactose, phosphatidylmaltose and phosphatidylmaltotriose, which were obtained from C(6)-NBD-phosphatidylcholine by phospholipase D-catalysed transphosphatidylation. The inward movement after the onset of scrambling was monitored by extraction of the non-internalized probe with BSA. We demonstrate that both the amino group and the size of the headgroup determine the kinetics of lipid scrambling, and that lipids with a ceramide backbone migrate much more slowly than glycerophospholipids with the same headgroup.
SUBMITTER: Dekkers DW
PROVIDER: S-EPMC1222440 | biostudies-other | 2002 Mar
REPOSITORIES: biostudies-other
ACCESS DATA