The first biantennary bacterial secondary cell wall polymer and its influence on S-layer glycoprotein assembly.
Ontology highlight
ABSTRACT: The cell surface of Aneurinibacillus thermoaerophilus DSM 10155 is covered with a square surface (S)-layer glycoprotein lattice. This S-layer glycoprotein, which was extracted with aqueous buffers after a freeze-thaw cycle of the bacterial cells, is the only completely water-soluble S-layer glycoprotein to be reported to date. The purified S-layer glycoprotein preparation had an overall carbohydrate content of 19%. Detailed chemical investigations indicated that the S-layer O-glycans of previously established structure accounted for 13% of total glycosylation. The remainder could be attributed to a peptidoglycan-associated secondary cell wall polymer. Structure analysis was performed using purified secondary cell wall polymer-peptidoglycan complexes. NMR spectroscopy revealed the first biantennary secondary cell wall polymer from the domain Bacteria, with the structure alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->4)-beta-L-Gal p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->4)-beta-L-Gal p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->4)-[alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->4)-beta-L-Gal p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->4)-beta-L-Gal p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)]-beta-L-Man p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)-beta-L-Man p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->3)-alpha-L-Glc p NAc-(1-->O)-PO(2)(-)-O-PO(2)(-)-(O-->6)-MurNAc- (where MurNAc is N -acetylmuramic acid). The neutral polysaccharide is linked via a pyrophosphate bond to the C-6 atom of every fourth N -acetylmuramic acid residue, in average, of the A1gamma-type peptidoglycan. In vivo, the biantennary polymer anchored the S-layer glycoprotein very effectively to the cell wall, probably due to the doubling of motifs for a proposed lectin-like binding between the polymer and the N-terminus of the S-layer protein. When the cellular support was removed during S-layer glycoprotein isolation, the co-purified polymer mediated the solubility of the S-layer glycoprotein in vitro. Initial crystallization experiments performed with the soluble S-layer glycoprotein revealed that the assembly property could be restored upon dissociation of the polymer by the addition of poly(ethylene glycols). The formed two-dimensional crystalline S-layer self-assembly products exhibited the same lattice symmetry as observed on intact bacterial cells.
SUBMITTER: Steindl C
PROVIDER: S-EPMC1223010 | biostudies-other | 2002 Dec
REPOSITORIES: biostudies-other
ACCESS DATA