Distance of sequons to the C-terminus influences the cellular N-glycosylation of the prion protein.
Ontology highlight
ABSTRACT: Cell-specific differences in the utilization of the two N-glycosylation sequons (Asn180-Ile-Thr and Asn196-Phe-Thr) of the prion protein (PrP) have been proposed to influence the aetiology of the neurodegenerative prion diseases. As the N-glycosylation of PrP is ablated by deletion of the C-terminal glycosyl-phosphatidylinositol (GPI) anchor signal sequence, we have investigated the determinants for PrP sequon utilization in human neuronal cells using the novel approach of restoring N-glycosylation to secreted forms of PrP lacking a GPI anchor. N-glycosylation was restored to an efficiency comparable with that of GPI anchored PrP when the distance of the sequon to the C-terminus was increased so that it was sufficient to reach the active site of oligosaccharyltransferase before chain termination. Our findings indicate that sequon utilization in PrP is a co-translational process that precedes GPI anchor addition and, as such, will be greatly influenced by the dynamics of the translocon-oligosaccharyltransferase complex.
SUBMITTER: Walmsley AR
PROVIDER: S-EPMC1223167 | biostudies-other | 2003 Feb
REPOSITORIES: biostudies-other
ACCESS DATA