Urea signalling to immediate-early gene transcription in renal medullary cells requires transactivation of the epidermal growth factor receptor.
Ontology highlight
ABSTRACT: Signalling by physiological levels of urea (e.g. 200 mM) in cells of the mammalian renal medulla is reminiscent of activation of a receptor tyrosine kinase. The epidermal growth factor (EGF) receptor may be transactivated by a variety of G-protein-coupled receptors, primarily through metalloproteinase-dependent cleavage of a membrane-anchored EGF precursor. In the murine inner medullary collecting duct (mIMCD3) cell line, urea (200 mM) induced prompt (1-5 min) tyrosine phosphorylation of the EGF receptor. Pharmacological inhibition of EGF receptor kinase activity with AG1478 or PD153035 blocked urea-inducible transcription and expression of the immediate-early gene, Egr-1. AG1478 blocked, either fully or partially, other hallmarks of urea signalling including Elk-1 activation and extracellular signal-regulated kinase phosphorylation. EGF receptor kinase inhibition also blocked the cytoprotective effect of urea observed in the context of hypertonicity-inducible apoptosis. EGF receptor transactivation was likely to be attributable to metalloproteinase-dependent ectodomain shedding of an EGF receptor agonist because both specific and non-specific inhibitors of metalloproteinases blocked the urea effect. Heparin-binding EGF (HB-EGF), in particular, was implicated because the diphtheria toxin analogue and highly specific antagonist of HB-EGF, CRM197, also blocked urea-inducible transcription. In aggregate, these data indicate that signalling in response to urea in renal medullary cells requires EGF receptor transactivation, probably through autocrine action of HB-EGF.
SUBMITTER: Zhao H
PROVIDER: S-EPMC1223202 | biostudies-other | 2003 Mar
REPOSITORIES: biostudies-other
ACCESS DATA