Unknown

Dataset Information

0

Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of crystalline chitin.


ABSTRACT: Bacillus circulans chitinase A1 (ChiA1) has a deep substrate-binding cleft on top of its (beta/alpha)8-barrel catalytic domain and an interaction between the aromatic residues in this cleft and bound oligosaccharide has been suggested. To study the roles of these aromatic residues, especially in crystalline-chitin hydrolysis, site-directed mutagenesis of these residues was carried out. Y56A and W53A mutations at subsites -5 and -3, respectively, selectively decreased the hydrolysing activity against highly crystalline beta-chitin. W164A and W285A mutations at subsites +1 and +2, respectively, decreased the hydrolysing activity against crystalline beta-chitin and colloidal chitin, but enhanced the activities against soluble substrates. These mutations increased the K(m)-value when reduced (GlcNAc)5 (where GlcNAc is N -acetylglucosamine) was used as the substrate, but decreased substrate inhibition observed with wild-type ChiA1 at higher concentrations of this substrate. In contrast with the selective effect of the other mutations, mutations of W433 and Y279 at subsite -1 decreased the hydrolysing activity drastically against all substrates and reduced the kcat-value, measured with 4-methylumbelliferyl chitotrioside to 0.022% and 0.59% respectively. From these observations, it was concluded that residues Y56 and W53 are only essential for crystalline-chitin hydrolysis. W164 and W285 are very important for crystalline-chitin hydrolysis and also participate in hydrolysis of other substrates. W433 and Y279 are both essential for catalytic reaction as predicted from the structure.

SUBMITTER: Watanabe T 

PROVIDER: S-EPMC1223756 | biostudies-other | 2003 Nov

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC7581260 | biostudies-literature
| S-EPMC5328894 | biostudies-literature
| S-EPMC6145945 | biostudies-literature
| S-EPMC5827449 | biostudies-literature
| S-EPMC1183465 | biostudies-literature
| S-EPMC4250540 | biostudies-literature
| S-EPMC3696644 | biostudies-literature
| S-EPMC2951234 | biostudies-literature
| S-EPMC5330655 | biostudies-literature
| S-EPMC7463862 | biostudies-literature