Pyridoxine biosynthesis in yeast: participation of ribose 5-phosphate ketol-isomerase.
Ontology highlight
ABSTRACT: To identify the genes involved in pyridoxine synthesis in yeast, auxotrophic mutants were prepared. After transformation with a yeast genomic library, a transformant (A22t1) was obtained from one of the auxotrophs, A22, which lost the pyridoxine auxotrophy. From an analysis of the plasmid harboured in A22t1, the RKI1 gene coding for ribose 5-phosphate ketol-isomerase and residing on chromosome no. 15 was identified as the responsible gene. This notion was confirmed by gene disruption and tetrad analysis on a diploid prepared from the wild-type and the auxotroph. The site of mutation on the RKI1 gene was identified as position 566 with a transition from guanine to adenine, resulting in amino acid substitution of Arg-189 with lysine. The enzymic activity of the Arg189-->Lys (R189K) mutant of ribose 5-phosphate ketolisomerase was 0.6% when compared with the wild-type enzyme. Loss of the structural integrity of the protein seems to be responsible for the greatly diminished activity, which eventually leads to a shortage of either ribose 5-phosphate or ribulose 5-phosphate as the starting or intermediary material for pyridoxine synthesis.
SUBMITTER: Kondo H
PROVIDER: S-EPMC1224052 | biostudies-other | 2004 Apr
REPOSITORIES: biostudies-other
ACCESS DATA