Unknown

Dataset Information

0

Surface-mounted altitudinal molecular rotors in alternating electric field: single-molecule parametric oscillator molecular dynamics.


ABSTRACT: Molecular dynamics simulations of the response to oscillating electric field elicited from an altitudinal dipolar molecular rotor mounted on the Au(111) surface and previously studied experimentally in static fields show unidirectional rotation in one of the three pairs of conformational enantiomers. The simulations are based on the universal force field and take into account electronic friction in the metal through its effect on the image charges. The rotor consists of two cobalt sandwich posts whose upper decks carry a biphenyl-like rotator with a dipole moment perpendicular to the rotation axle, mounted parallel to the surface. A phase diagram of rotor performance at 10 K as a function of field frequency and amplitude contains five unidirectional rotation regions: synchronous, half-synchronous (every other cycle skipped), quarter-synchronous (only indistinctly), asynchronous, and essentially no response. The nature of the subharmonic "single-molecule parametric oscillator" behavior is understood in mechanistic detail. Simulations at higher temperatures distinguish the thermal ("Brownian") and driven regimes of rotation, elucidated in terms of time-dependent potential energy surfaces for the rotation.

SUBMITTER: Horinek D 

PROVIDER: S-EPMC1242313 | biostudies-other | 2005 Oct

REPOSITORIES: biostudies-other

altmetric image

Publications

Surface-mounted altitudinal molecular rotors in alternating electric field: single-molecule parametric oscillator molecular dynamics.

Horinek Dominik D   Michl Josef J  

Proceedings of the National Academy of Sciences of the United States of America 20050926 40


Molecular dynamics simulations of the response to oscillating electric field elicited from an altitudinal dipolar molecular rotor mounted on the Au(111) surface and previously studied experimentally in static fields show unidirectional rotation in one of the three pairs of conformational enantiomers. The simulations are based on the universal force field and take into account electronic friction in the metal through its effect on the image charges. The rotor consists of two cobalt sandwich posts  ...[more]

Similar Datasets

| S-EPMC9535713 | biostudies-literature
| S-EPMC7295800 | biostudies-literature
| S-EPMC7610394 | biostudies-literature
| S-EPMC2588427 | biostudies-literature
| S-EPMC8023798 | biostudies-literature
| S-EPMC6970166 | biostudies-literature
| S-EPMC6588380 | biostudies-literature
| S-EPMC7817103 | biostudies-literature
| S-EPMC4855146 | biostudies-other
| S-EPMC5743553 | biostudies-literature