Unknown

Dataset Information

0

Substrate activation and inhibition in coenzyme-substrate reactions cyclohexanol oxidation catalysed by liver alcohol dehydrogenase.


ABSTRACT: 1. The activity of liver alcohol dehydrogenase with cyclohexanol and cyclohexanone as substrates was studied, and the initial-rate parameters were determined from measurements at low substrate concentrations. In contrast with aliphatic ketones, cyclohexanone is a fairly good substrate, although less active than aliphatic aldehydes. The Michaelis constant for cyclohexanol is of the same order as that for ethanol, and the maximum rate and Michaelis constant for NAD(+) obtained with cyclohexanol are very similar to those obtained with primary aliphatic alcohols. The data for this substrate at low concentrations are therefore consistent with a compulsory-order mechanism in which ternary complexes are not rate-limiting. 2. With large concentrations of NAD(+), substrate activation is observed with increasing concentrations of cyclohexanol, whereas with small NAD(+) concentrations substrate inhibition is observed. This complex behaviour is explained by a mechanism previously proposed for this enzyme, which also satisfactorily described the kinetics of oxidation of primary and secondary aliphatic alcohols and aldehydes, including the substrate inhibition exhibited by primary alcohols, and the reduction of aldehydes. The activation with large concentrations of both NAD(+) and cyclohexanol is attributed to the formation of an abortive complex, E.NADH.ROH, from which NADH dissociates more rapidly than from the normal product complex E.NADH. Substrate inhibition in the presence of small NAD(+) concentrations is attributed to the formation of an active complex E.ROH, with which NAD(+) reacts more slowly than with the free enzyme. 3. Some support for these mechanisms of substrate activation and inhibition is obtained by approximate theoretical calculations, and their applicability to other two-substrate reactions that exhibit complex initial-rate behaviour, as a more likely alternative to the postulate of a second binding site for the substrate, is suggested.

SUBMITTER: Dalziel K 

PROVIDER: S-EPMC1265162 | biostudies-other | 1966 Aug

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC1184006 | biostudies-other
| S-EPMC1186160 | biostudies-other
| S-EPMC1154095 | biostudies-other
| S-EPMC1158448 | biostudies-other
| S-EPMC1184007 | biostudies-other
| S-EPMC7126473 | biostudies-literature
| S-EPMC3121342 | biostudies-literature
| S-EPMC1214325 | biostudies-other
| S-EPMC5481492 | biostudies-literature
| PRJNA759401 | ENA