Unknown

Dataset Information

0

Tropomyosin requires an intact N-terminal coiled coil to interact with tropomodulin.


ABSTRACT: Tropomodulins (Tmods) are tropomyosin (TM) binding proteins that bind to the pointed end of actin filaments and modulate thin filament dynamics. They bind to the N termini of both "long" TMs (with the N terminus encoded by exon 1a of the alpha-TM gene) and "short" nonmuscle TMs (with the N terminus encoded by exon 1b). In this present study, circular dichroism was used to study the interaction of two designed chimeric proteins, AcTM1aZip and AcTM1bZip, containing the N terminus of a long or a short TM, respectively, with protein fragments containing residues 1 to 130 of erythrocyte or skeletal muscle Tmod. The binding of either TMZip causes similar conformational changes in both Tmod fragments promoting increases in both alpha-helix and beta-structure, although they differ in binding affinity. The circular dichroism changes in the Tmod upon binding and modeling of the Tmod sequences suggest that the interface between TM and Tmod includes a three- or four-stranded coiled coil. An intact coiled coil at the N terminus of the TMs is essential for Tmod binding, as modifications that disrupt the N-terminal helix, such as removal of the N-terminal acetyl group from AcTM1aZip or striated muscle alpha-TM, or introduction of a mutation that causes nemaline myopathy, Met-8-Arg, into AcTM1aZip destroyed Tmod binding.

SUBMITTER: Greenfield NJ 

PROVIDER: S-EPMC1302047 | biostudies-other | 2002 May

REPOSITORIES: biostudies-other

altmetric image

Publications

Tropomyosin requires an intact N-terminal coiled coil to interact with tropomodulin.

Greenfield Norma J NJ   Fowler Velia M VM  

Biophysical journal 20020501 5


Tropomodulins (Tmods) are tropomyosin (TM) binding proteins that bind to the pointed end of actin filaments and modulate thin filament dynamics. They bind to the N termini of both "long" TMs (with the N terminus encoded by exon 1a of the alpha-TM gene) and "short" nonmuscle TMs (with the N terminus encoded by exon 1b). In this present study, circular dichroism was used to study the interaction of two designed chimeric proteins, AcTM1aZip and AcTM1bZip, containing the N terminus of a long or a sh  ...[more]

Similar Datasets

| S-EPMC2760843 | biostudies-literature
| S-EPMC2856770 | biostudies-literature
| S-EPMC6139885 | biostudies-literature
| S-EPMC7840751 | biostudies-literature
| S-EPMC3720919 | biostudies-literature
| S-EPMC3166381 | biostudies-literature
| S-EPMC1563903 | biostudies-literature
| S-EPMC1850752 | biostudies-literature
| S-EPMC2134803 | biostudies-literature
| S-EPMC5079755 | biostudies-other