A procedure for refining a coiled coil protein structure using x-ray fiber diffraction and modeling.
Ontology highlight
ABSTRACT: We describe a combined use of experimental and simulation techniques to configure side chains in a coiled coil structure. As already demonstrated in a previous work, x-ray diffraction patterns from hard alpha-keratin fibers in the 5.15 A meridian zone reflect the global configuration of the chi(1) dihedral angle of the coiled coil side chains. Molecular simulations, such as energy minimization and molecular dynamics, and rotameric representation in the PDB, are used here on a heterodimeric coiled coil to investigate the dihedral angle distribution along the sequence. Different procedures have been used to build the structure, the quality assessment was based on the agreement between the simulated diffraction patterns and the experimental ones in the fingerprint region of coiled coils (5.15 A). The best one for building a realistic coiled coil structure consists of placing the side chains using molecular dynamics (MD) simulations, followed by side chain positioning using SMD or SCWRL procedures. The side chains and the backbone are equilibrated during the MD until they reach an equilibrium state for the t/g(+) ratio. Positioning the side chains on the resulting backbone, using the above procedures, gives rise to a well-defined 5.15 A meridian reflection.
SUBMITTER: Briki F
PROVIDER: S-EPMC1302271 | biostudies-other | 2002 Oct
REPOSITORIES: biostudies-other
ACCESS DATA