Smith-Lemli-Opitz syndrome is caused by mutations in the 7-dehydrocholesterol reductase gene.
Ontology highlight
ABSTRACT: Smith-Lemli-Opitz syndrome is a frequently occurring autosomal recessive developmental disorder characterized by facial dysmorphisms, mental retardation, and multiple congenital anomalies. Biochemically, the disorder is caused by deficient activity of 7-dehydrocholesterol reductase, which catalyzes the final step in the cholesterol-biosynthesis pathway-that is, the reduction of the Delta7 double bond of 7-dehydrocholesterol to produce cholesterol. We identified a partial transcript coding for human 7-dehydrocholesterol reductase by searching the database of expressed sequence tags with the amino acid sequence for the Arabidopsis thaliana sterol Delta7-reductase and isolated the remaining 5' sequence by the "rapid amplification of cDNA ends" method, or 5'-RACE. The cDNA has an open reading frame of 1,425 bp coding for a polypeptide of 475 amino acids with a calculated molecular weight of 54.5 kD. Heterologous expression of the cDNA in the yeast Saccharomyces cerevisiae confirmed that it codes for 7-dehydrocholesterol reductase. Chromosomal mapping experiments localized the gene to chromosome 11q13. Sequence analysis of fibroblast 7-dehydrocholesterol reductase cDNA from three patients with Smith-Lemli-Opitz syndrome revealed distinct mutations, including a 134-bp insertion and three different point mutations, each of which was heterozygous in cDNA from the respective parents. Our data demonstrate that Smith-Lemli-Opitz syndrome is caused by mutations in the gene coding for 7-dehydrocholesterol reductase.
SUBMITTER: Waterham HR
PROVIDER: S-EPMC1377322 | biostudies-other | 1998 Aug
REPOSITORIES: biostudies-other
ACCESS DATA