Nuclear gene genealogies reveal historical, demographic and selective factors associated with speciation in field crickets.
Ontology highlight
ABSTRACT: Population genetics theory predicts that genetic drift should eliminate shared polymorphism, leading to monophyly or exclusivity of populations, when the elapsed time between lineage-splitting events is large relative to effective population size. We examined patterns of nucleotide variation in introns at four nuclear loci to relate processes affecting the history of genes to patterns of divergence among natural populations and species. Ancestral polymorphisms were shared among three recognized species, Gryllus firmus, G. pennsylvanicus, and G. ovisopis, and genealogical patterns suggest that successive speciation events occurred recently and rapidly relative to effective population size. High levels of shared polymorphism among these morphologically, behaviorally, and ecologically distinct species indicate that only a small fraction of the genome needs to become differentiated for speciation to occur. Among the four nuclear gene loci there was a 10-fold range in nucleotide diversity, and patterns of polymorphism and divergence suggest that natural selection has acted to maintain or eliminate variation at some loci. While nuclear gene genealogies may have limited applications in phylogeography or other approaches dependent on population monophyly, they provide important insights into the historical, demographic, and selective forces that shape speciation.
SUBMITTER: Broughton RE
PROVIDER: S-EPMC1462531 | biostudies-other | 2003 Apr
REPOSITORIES: biostudies-other
ACCESS DATA