Effects of mibefradil and nifedipine on arteriolar myogenic responsiveness and intracellular Ca(2+).
Ontology highlight
ABSTRACT: 1. Ca(2+) entry mechanisms underlying spontaneous arteriolar tone and acute myogenic reactivity remain uncertain. These studies aimed to compare the effects of nifedipine and the putative T-channel blocker, mibefradil, on arteriolar myogenic responsiveness and intracellular Ca(2+) (Ca(2+)(i)). 2. First order cremaster muscle arterioles (1A) were isolated from rats, cannulated, pressurized to 70 mmHg in the absence of intraluminal flow, and mechanical responses studied by video microscopy. The Ca(2+)(i) was measured using fluorescence imaging of Fura 2 loaded arterioles. 3. Both nifedipine and mibefradil showed dose-dependent inhibition of spontaneous myogenic tone (at 70 mmHg; pEC(50) 7.04+/-0.17 vs 6.65+/-0.20 respectively, n=6 for both, n.s.) and KCl-induced vasoconstriction (at 70 mmHg; pEC(50) 6.93+/-0. 38 vs 6.45+/-0.27 respectively, n=6 for both, n.s.). 4. In arterioles maintained at 50 mmHg, nifedipine (10(-7) and 10(-5) M) caused a concentration dependent reduction in Ca(2+)(i), however, mibefradil (10(-7) and 10(-5) M) had no effect. Furthermore nifedipine significantly attenuated the increase in Ca(2+)(i) associated with an acute pressure step (50 - 120 mmHg) whereas mibefradil was considerably less effective. 5. Mibefradil (10(-7) M) significantly attenuated contractile responses to 60 mM KCl without altering the KCl-induced increase in Ca(2+)(i), in contrast to nifedipine (10(-7) M) which reduced both Ca(2+)(i) and contraction. 6. Membrane potential of arterioles with spontaneous myogenic tone (70 mmHg) was -41.5+/-1. 0 mV. Nifedipine (10(-7) or 10(-5) M) had no effect on membrane potential, however mibefradil (10(-5) M) caused significant depolarization. 7. In summary, both mibefradil and nifedipine inhibit arteriolar spontaneous tone and acute myogenic reactivity. While there may be overlap in the mechanisms by which these agents inhibit tone, differences in effects on membrane potential and intracellular Ca(2+) levels suggest mibefradil exhibits actions other than blockade of Ca(2+) entry in skeletal muscle arterioles.
SUBMITTER: Potocnik SJ
PROVIDER: S-EPMC1572423 | biostudies-other | 2000 Nov
REPOSITORIES: biostudies-other
ACCESS DATA